Food and Bioprocess Technology

, Volume 2, Issue 3, pp 257–262 | Cite as

Impact of Freezing Process on Salt Diffusivity of Seafood: Application to Salmon (Salmo salar) Using Conventional and Pressure Shift Freezing

  • Ebrahim Alizadeh
  • Nicolas Chapleau
  • Marie de-Lamballerie
  • Alain Le-Bail
Original Paper


The depression of the melting temperature of ice under pressure permits to obtain a rapid freezing of foods. The expected benefit lies in reduced water diffusion from the intra- toward the extracellular media, resulting in a reduced drip loss during thawing. Beside, the modification of the cellular structure induced by ice formation may affect the mass diffusivity of the flesh. In the present study, salmon was used as a model food. Slabs of salmon (1-cm thick) were frozen using blast air and pressure shift freezing at 200 MPa. The impact of the freezing process on the mass diffusivity of salt was evaluated using an aqueous solution (NaCl, 3% w/w). Results indicate that the effective mass diffusivity was slightly increased in comparison to non-frozen flesh when a rapid freezing process was used. This may be attributed to a change in the permeability of cell membranes caused by freezing and high pressure.


Freezing Mass diffusivity Microstructure High pressure Fish Salmon 



The PhD project of E. Alizadeh has been co-funded by an Iran-French agreement (SFERE-MRST). This study has been carried out with financial support from the Commission of the European Communities, FP5 “Safe Ice” project (QLK1-CT-2002-02230). It does not necessarily reflect its views and in no way anticipates the Commission’s future policy in this area. O. Rioux is thanked for its technical support during experimental work.


  1. Bridgman, P. W. (1912). Water in the liquid and five solid forms under pressure. Proceedings of the American Academy of Arts and Sciences, 47, 411–558.Google Scholar
  2. Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed.). Londres: Oxford University Press.Google Scholar
  3. Cheftel, J. C., Lévy, J., & Dumay, E. (2000). Pressure-assisted freezing and thawing: principles and potential applications. Food Reviews International, 16(4), 453–83. doi: 10.1081/FRI-100102319.CrossRefGoogle Scholar
  4. Chevalier, D., Le Bail, A., & Ghoul, M. (2000a). Freezing and ice crystals formed in a cylindrical food model: part II. Comparison between freezing at atmospheric pressure and pressure-shift freezing. Journal of Food Engineering, 46(4), 287–293. doi: 10.1016/S0260-8774(00)00090-X.CrossRefGoogle Scholar
  5. Chevalier, D., Sequeira-Munoz, A., Le Bail, A., Simpson, B. K., & Ghoul, M. (2000b). Effect of freezing conditions and storage on ice crystal and drip volume in turbot (Scophthalmus maximus): Evaluation of pressure shift freezing vs. air-blast freezing. Innovative Food Science and Emerging Technologies, 1(3), 193–201. doi: 10.1016/S1466-8564(00)00024-2.CrossRefGoogle Scholar
  6. Dornenburg, H., & Knorr, D. (1993). Cellular permeabilisation of cultured plant tissue by high electric field pulse and ultra high pressure for recovery of secondary metabolites. Food Biotechnology, 7, 35–48.CrossRefGoogle Scholar
  7. Eshtiaghi, M. N., Stute, R., & Knorr, D. (1994). High pressure and freezing pretreatment effects on drying rehydration, texture and colour of green beans, carrots and potatoes. Journal of Food Science, 59, 1168–1170. doi: 10.1111/j.1365-2621.1994.tb14668.x.CrossRefGoogle Scholar
  8. Farr, D. (1990). High pressure technology in the food industry. Trends in Food Science and Technology, 1, 14–16. doi: 10.1016/0924-2244(90)90004-I.CrossRefGoogle Scholar
  9. Fennema, O. R. (1973). Nature of the freezing process. In O. R. Fennema, W. D. Powrie, & E. H. Marth (Eds.), Low temperature preservation of foods and living matter (pp. 151–222). New York, USA: Marcel Dekker.Google Scholar
  10. Gallart-Jornet, L., Barat, J. M., Rustad, T., Erikson, U., Escriche, I., & Fito, P. (2007). A comparative study of brine salting of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar). Journal of Food Engineering, 79(1), 261–270. doi: 10.1016/j.jfoodeng.2006.01.053.CrossRefGoogle Scholar
  11. Jason, A. C. (1965). Effects of fat content on diffusion of water in fish muscle. Journal of the Science of Food and Agriculture, 16, 281–288. doi: 10.1002/jsfa.2740160508.CrossRefGoogle Scholar
  12. Leach, G., Pyle, L., & Niranjan, K. (1995). Effective diffusivity of total solids and pectic substances from apple tissue. International Journal of Food Science & Technology, 29(6), 687–697.Google Scholar
  13. Martino, M.-N., & Zaritzky, N.-E. (1986). Fixing conditions in the freeze substitution technique for light microscopy observation of frozen beef tissue. Food Microstructure, 35, 19–24.Google Scholar
  14. Martino, M. N., Otero, L., Sanz, P. D., & Zaritzky, N. E. (1998). Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Science, 50(3), 303–313. doi: 10.1016/S0309-1740(98)00038-2.CrossRefGoogle Scholar
  15. Noriega, E., Laca, A., & Dı’az, M. (2008). Modelling of diffusion-limited growth to predict Listeria distribution in structured model foods. Journal of Food Engineering, 87, 247–256.Google Scholar
  16. Rastogi, N. K., Angersbach, A., & Knorr, D. (2000). Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration. Journal of Food Engineering, 45(1), 25–31. doi: 10.1016/S0260-8774(00)00037-6.CrossRefGoogle Scholar
  17. Rastogi, N. K., Angersbach, A., & Knorr, D. (2000a). Evaluation of mass transfer mechanisms during osmotic treatment of plant materials. Journal of Food Engineering, 65(6), 1016–1021. doi: 10.1111/j.1365-2621.2000.tb09409.x.Google Scholar
  18. Rastogi, N. K., Raghavarao, K. S. M. S., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends in Food Science and Technology, 13(2), 58–69. doi: 10.1016/S0924-2244(02)00032-8.CrossRefGoogle Scholar
  19. Rastogi, N. K., Subramanian, R., & Raghavarao, K. S. M. S. (1994). Application of high pressure technology in food industry. Indian Food Ind., 13, 30–34.Google Scholar
  20. Rodger, G., Hastings, R., Cryne, C., & Bailey, J. (1984). Diffusion properties of salt and acetic acid into herring and their subsequent effect on the muscle tissue. Journal Food Science, 49(3), 714–720. doi: 10.1111/j.1365-2621.1984.tb13194.x.CrossRefGoogle Scholar
  21. Rora, A. M. B., Furuhaug, R., Fjaera, S. O., & Skjervold, P. O. (2004). Salt diffusion in pre-rigor filleted Atlantic salmon. Aquaculture, 232(1–4), 255–263. doi: 10.1016/S0044-8486(03)00460-5.CrossRefGoogle Scholar
  22. Schwartzberg, H. G., & Chao, R. Y. (1982). Solute diffusivities in leaching processes. Food Technology, 36, 73–86.Google Scholar
  23. Sequeira-Munoz, A., Chevalier, D., Simpson, B. K., Le Bail, A., & Ramaswamy, H. S. (2005). Effect of pressure-shift freezing versus ABF of carp (Cyprinus carpio) fillets: a storage study. Journal of Food Biochemistry, 29, 504–516. doi: 10.1111/j.1745-4514.2005.00034.x.CrossRefGoogle Scholar
  24. Sigurgisladottir, S., Ingvarsdottir, H., Torrissen, O. J., Cardinal, M., & Hafsteinsson, H. (2000). Effects of freezing/thawing on the microstructure and the texture of smoked Atlantic salmon (Salmo salar). Food Research International, 33(10), 857–865. doi: 10.1016/S0963-9969(00)00105-8.CrossRefGoogle Scholar
  25. Varzakas, T., Arapoglou, D., & Israilides, C. (2006). Kinetics of endoglucanase and endoxylanase uptake by soybean seeds. Journal of Bioscience and Bioengineering, 101(2), 111–119. doi: 10.1263/jbb.101.111.CrossRefGoogle Scholar
  26. Varzakas, T. H., Arapoglou, D., & Israilides, C. J. (2005b). Infusion of an endoglucanase and an endoxylanase from Aspergillus niger in soybean. LWT, 38, 239–247. doi: 10.1016/j.lwt.2004.05.009.CrossRefGoogle Scholar
  27. Varzakas, T. H., Leach, G. C., Israilides, C. J., & Arapoglou, D. (2005a). Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods. Enzyme and Microbial Technology, 37, 29–41. doi: 10.1016/j.enzmictec.2004.06.015.CrossRefGoogle Scholar
  28. Wang, D., Tang, J., & Correia, L. R. (2000). Salt diffusivities and salt diffusion in farmed Atlantic salmon muscle as influenced by rigor mortis. Journal of Food Engineering, 43(2), 115–123. doi: 10.1016/S0260-8774(99)00140-5.CrossRefGoogle Scholar
  29. Zhu, S., Le Bail, A., & Ramaswamy, H. S. (2003). Ice crystal formation in pressure shift freezing of Atlantic salmon (Salmo salar) as compared to classical freezing methods. Journal of Food Processing and Preservation, 27(6), 427–444. doi: 10.1111/j.1745-4549.2003.tb00528.x.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Ebrahim Alizadeh
    • 1
  • Nicolas Chapleau
    • 2
  • Marie de-Lamballerie
    • 2
  • Alain Le-Bail
    • 2
  1. 1.Department of FisheriesUniversity of ZabolZabolIran
  2. 2.ENITIAA, GEPEA (UMR CNRS 6144)Nantes Cedex 3France

Personalised recommendations