Food and Bioprocess Technology

, Volume 2, Issue 2, pp 115–121 | Cite as

Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review

Review Paper


In the food and agricultural industry, sensors are being used for process control, monitoring quality, and assessing safety. There is a growing demand for carbon dioxide (CO2) sensors in the bulk food storage sector, because CO2 sensors can be used to detect incipient spoilage and to assess CO2 levels in modified-atmosphere packages and storage structures. The market potential for reliable and inexpensive CO2 sensors is huge because of a wide range of applications in the agri-food industry. This review synthesizes information about the types of CO2 sensors, analyzes their detection processes, provides a broad overview of the innovative research on the development of sensors, sensing mechanisms, and their characteristics, and outlines future possibilities for use of CO2 sensors.


CO2 sensors Optical sensors Electrochemical sensors Metal oxide sensors Polymer sensors 


  1. Barsan, N., & Weimar, U. (2001). Conduction of model of metal oxide gas sensors. Journal of Electroceramics, 7, 143–167. doi:10.1023/A:1014405811371.CrossRefGoogle Scholar
  2. BCC (2003). Gas sensors and gas metering: applications and markets. Norwalk, CT: BCC Corporation Company.Google Scholar
  3. Bultzingslowen, C. V., McEvoy, A. K., McDonagh, C., MacCraith, B. D., Klimant, I. M., Krausec, C., et al. (2002). Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst (London), 27, 1478–1483. doi:10.1039/b207438a.CrossRefGoogle Scholar
  4. Capone, S., Forleo, A., Francioso, R., Rella, P., Spadavecchia, J., & Presicce, S. (2003). Solid state gas sensors: state of the art and future activities. Journal of Optoelecronics and Advanced materials, 5(5), 1335–1348.Google Scholar
  5. Cattrall, R. W. (1997). Chemical sensors. Oxford, UK: Oxford University Press.Google Scholar
  6. Colin, F., Carter, T. J. N., & Wright, J. D. (2003). Modification of a piezo-optical gas dosimeter system towards continuous gas sensing: A feasibility study with carbon dioxide. Sensors and Actuators. B, Chemical, 90, 216–221. doi:10.1016/S0925-4005(03)00031-5.CrossRefGoogle Scholar
  7. Coppock, R. (1998). Implementing the Kyoto protocol. Issues in Science and Technology, Washington, DC. National Academy of Sciences.Google Scholar
  8. CTEH (2007) TO-14 Analytes using a portable GC/MS. Application Note, Center for Toxicology and Environmental Health, University of Arkansas.Google Scholar
  9. Cui, G., Lee, J. S., Kim, S. J., Nama, H., Cha, G. S., & Kim, H. D. (1998). Potentiometric pCO2 sensor using polyaniline-coated pH-sensitive electrodes. Analyst (London), 123, 1855–1859. doi:10.1039/a802872i.CrossRefGoogle Scholar
  10. Datta, A. K. (1992). Sensors and food processing operations. In Y. H. Hui (Ed.), Encyclopedia of food science and technology (pp. 2327–2333). New York: Wiley.Google Scholar
  11. Diagne, E. H. A., & Lumbreras, M. (2001). Elaboration and characterization of tin oxide–lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique. Sensors and Actuators. B, Chemical, 78, 98–105. doi:10.1016/S0925-4005(01)00797-3.CrossRefGoogle Scholar
  12. Dickinson, T. A., White, J., Kauer, J. S., & Walt, D. R. (1998). Current trends in artificial-nose technology. Trends in Biotechnology, 16(6), 250–258. doi:10.1016/S0167-7799(98)01185-8.CrossRefGoogle Scholar
  13. Dieckmann, M., & Buchholz, R. (1999). Apparatus for measuring the partial pressure of gases dissolved in liquids US Patent 6003362.Google Scholar
  14. Frost & Sullivan (2000). World flow sensor markets. Report 7261–32. London, UK. Frost and Sullivan Consulting Company.Google Scholar
  15. Haeusler, A., & Meyer, J. (1996). A novel thick film conductive type carbon dioxide sensor. Sensors and Actuators. B, Chemical, 34(1–3), 388–395. doi:10.1016/S0925-4005(96)01847-3.CrossRefGoogle Scholar
  16. Herber, S., Bomer, J., Olthuis, W., Bergveld, P., & Berg, A. V. (2005). A miniaturized carbon dioxide gas sensor based on sensing of pH-sensitive hydrogel swelling with a pressure sensor. Biomed Microdevices, 7(3), 197–204. doi:10.1007/s10544-005-3026-5.CrossRefGoogle Scholar
  17. Hooker, S. A. (2002). Nanotechnology advantages applied to gas sensor development. The Nanoparticles 2002 Conference Proceedings. Norwalk, CT: Business Communications Company.Google Scholar
  18. Irimia-Vladu, M., & Fergus, J. W. (2006). Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing. Synthetic Metals, 156, 1401–1407. doi:10.1016/j.synthmet.2006.11.005.CrossRefGoogle Scholar
  19. Ishihara, T., Kometani, K., Hashida, M., & Takita, Y. (1991). Application of mixed oxide capacitor to the selective carbon dioxide sensor. Journal of the Electrochemical Society, 138(1), 173–176. doi:10.1149/1.2085530.CrossRefGoogle Scholar
  20. Jasinski, G., Jasinski, P., Chachulski, B., & Nowakowski, A. (2006). Electrocatalytic gas sensors based on Nasicon and Lisicon. Materials Science—Poland, 24(1), 261–267.Google Scholar
  21. Jayas, D. S., Irvine, D. A., Mazza, G., & Jeyamkondan, S. (2001). Evaluation of a computer-controlled ventilation system for a potato storage facility. Canadian Biosystems Engineering, 43(5), 5–12.Google Scholar
  22. Kaneyasu, K., Otsuka, K., Setoguchi, Y., Sonoda, S., Nakahara, T., & Aso, I. (2000). A carbon dioxide gas sensor based on solid electrolyte based on air quality control. Sensors and Actuators. B, Chemical, 66, 102–106. doi:10.1016/S0925-4005(99)00411-6.CrossRefGoogle Scholar
  23. Karasek, F. W., & Clement, R. E. (1988). Basic gas chromatography–mass spectrometry: Principles and techniques. Amsterdam: Elsevier Science.Google Scholar
  24. Kim, D., Yoon, J., Park, H., & Kim, K. (2000). CO2 sensing of SnO2 thick film by coating lanthanum oxide. Sensors and Actuators. B, Chemical, 62(1), 61–66. doi:10.1016/S0925-4005(99)00305-6.CrossRefGoogle Scholar
  25. Kinkade, B. R. (2000). Bringing nondispersive IR spectroscopic gas sensors to the mass market. Newton, MA: Sensors Magazine.Google Scholar
  26. Lee, D., Choi, S., & Lee, K. (1995). Carbon dioxide sensor using NASICON prepared by the sol–gel method. Sensors and Actuators. B, Chemical, 24, 607–609. doi:10.1016/0925-4005(95)85133-X.CrossRefGoogle Scholar
  27. Lee, D., & Lee, D. (2001). Environmental gas sensors. IEEE Sensors Journal, 1(3), 214–224. doi:10.1109/JSEN.2001.954834.CrossRefGoogle Scholar
  28. Lees, M. (2003). Food authenticity and traceability. Cambridge, UK: Wood Head.Google Scholar
  29. Mahmoudi, B., Gabouze, N., Guerbous, L., Haddadi, M., Cheraga, H., & Beldjilali, K. (2007). Photoluminescence response of gas sensor based on CHx/porous silicon—effect of annealing treatment. Materials Science & Engineering. B, 138(3), 293–297. doi:10.1016/j.mseb.2007.01.033.CrossRefGoogle Scholar
  30. Mandayo, G. G., Gonzalez, F., Rivas, I., Averdi, I., & Herran, J. (2006). BaTiO3–CuO sputtered thin film for carbon dioxide detection. Sensors and Actuators. B, Chemical, 118(1–2), 305–310. doi:10.1016/j.snb.2006.04.056.CrossRefGoogle Scholar
  31. Marazuela, M. D., Moreno-Bondi, M. C., & Orellana, G. (1998). Luminescence lifetime quenching of a ruthenium (II) polypyridyl dye for optical sensing of carbon dioxide. Applied Spectroscopy, 52(10), 1314–1320. doi:10.1366/0003702981942825.CrossRefGoogle Scholar
  32. MNT (2006). Microtechnology nano network gas sensor road map. London, UK: The Council of Gas Detection and Environment Monitoring.Google Scholar
  33. Moseley, P. T. (1997). Solid state gas sensors. Measurement Science & Technology, 8, 223–237. doi:10.1088/0957-0233/8/3/003.CrossRefGoogle Scholar
  34. Muir, W. E., Waterer, D., & Sinha, R. N. (1985). Carbon dioxide as an early indicator of stored cereal and oilseed spoilage. Transactions of the ASAE, 28, 1673–1675.Google Scholar
  35. Mulrooney, J., Clifford, J., Fitzpatrick, C., & Lewis, E. (2006). Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sensors and Actuators. A, Physical, 136, 104–110. doi:10.1016/j.sna.2006.11.016.CrossRefGoogle Scholar
  36. Nagel, D. J., & Smith, S. (2003). Nanotechnology enabled sensors: possibilities, realities and applications. Accessed 10 June 2006.
  37. Nakamura, N., & Amao, Y. (2003). An optical sensor for CO2 using thymol blue and europium(III) complex composite film. Sensors and Actuators. B, Chemical, 82, 98–101. doi:10.1016/S0925-4005(03)00098-4.CrossRefGoogle Scholar
  38. Oho, T., Tonosaki, T., Isomura, K., & Ogura, K. (2002). A CO2 sensor operating under high humidity. Synthetic Metals, 522, 173–178.Google Scholar
  39. Pasierb, P., Komornicki, S., Kozinski, S., Gajerski, R., & Rekas, M. (2004). Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte. Sensors and Actuators. B, Chemical, 101, 47–56. doi:10.1016/j.snb.2004.02.021.CrossRefGoogle Scholar
  40. Rego, R., & Mendes, A. (2004). Carbon dioxide/methane gas sensor based on the permselectivity of polymeric membranes for biogas monitoring. Sensors and Actuators. B, Chemical, 103, 2–6. doi:10.1016/j.snb.2004.01.013.CrossRefGoogle Scholar
  41. Schaller, E., Bosset, J. O., & Escher, F. (1998). Electronic noses and their application to food. Lebensmittel-Wissenschaft und-Technologie, 31(4), 305–316.CrossRefGoogle Scholar
  42. Segawa, H., Ohnishi, E., Arai, Y., & Yoshida, K. (2003). Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye. Sensors and Actuators. B, Chemical, 94, 276–281. doi:10.1016/S0925-4005(03)00372-1.CrossRefGoogle Scholar
  43. Severinghaus, J. W., & Bradley, A. F. (1958). Electrodes for blood pO2 and pCO2 determination. Journal of Applied Physiology, 13, 515–520.Google Scholar
  44. Shimizu, Y., & Yamashita, N. (2000). Solid electrolyte CO2 sensor using NASICON and perovskite type oxide electrode. Sensors and Actuators. B, Chemical, 64, 102–106. doi:10.1016/S0925-4005(99)00491-8.CrossRefGoogle Scholar
  45. Singh, D., Muir, W. E., & Sinha, R. N. (1983). Finite element modelling of carbon dioxide diffusion in stored wheat. Canadian Agricultural Engineering, 25, 149–152.Google Scholar
  46. Sipior, J., Randers-Eichhorn, L., Lakowics, J. R., Carter, C. M., & Rao, G. (1996). Phase fluormetric optical carbon dioxide gas sensor for fermentation off-gas monitoring. Biotechnology Progress, 12, 266–271. doi:10.1021/bp960005t.CrossRefGoogle Scholar
  47. Skoog, D. A. (1985). Principles of instrumental analysis (5th ed.). Philadelphia, PA: Saunders.Google Scholar
  48. Smolander, M., Hurme, E., & Ahvenainen, R. (1997). Leak indicators for modified-atmosphere packages. Trends in Food Science & Technology, 8, 101–106. doi:10.1016/S0924-2244(97)01017-0.CrossRefGoogle Scholar
  49. Takeda, S. (1999). A new type of CO2 sensor built up with plasma polymerized poly aniline thin film. Thin Solid Films, 343–344, 313–316. doi:10.1016/S0040-6090(98)01591-0.CrossRefGoogle Scholar
  50. Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35, 175–182. doi:10.1016/j.postharvbio.2004.07.008.CrossRefGoogle Scholar
  51. Tongola, B. J., Binag, C. A., & Sevilla, F. B. (2003). Surface and electrochemical studies of carbon dioxide probe based on conducting polypyrrole. Sensors and Actuators. B, Chemical, 93(1–3), 187–196. doi:10.1016/S0925-4005(03)00180-1.CrossRefGoogle Scholar
  52. USDA (1996). Using sensors to detect potentially hazardous atmospheres in production agriculture. Baltimore, MD: United States Department of Agriculture.Google Scholar
  53. Wang, L., & Kumar, R. V. (2003). A novel carbon dioxide gas sensor based on solid bielectrolyte. Sensors and Actuators. B, Chemical, 88, 292–299. doi:10.1016/S0925-4005(02)00372-6.CrossRefGoogle Scholar
  54. Ward, B. J., Liu, C. C., & Hunter, G. W. (2003). Novel processing of NASICON and sodium carbonate/barium carbonate thin and thick films for a CO2 microsensor. Journal of Materials Science, 38, 4289–4292. doi:10.1023/A:1026374830114.CrossRefGoogle Scholar
  55. Williams, D. E., & Pratt, K. F. E. (2000). Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides. Sensors and Actuators. B, Chemical, 70, 214–221. doi:10.1016/S0925-4005(00)00572-4.CrossRefGoogle Scholar
  56. Yang, Y., & Liu, C. (2000). Development of a NASICON based amperometric carbon dioxide sensor. Sensors and Actuators. B, Chemical, 62, 30–34. doi:10.1016/S0925-4005(99)00370-6.CrossRefGoogle Scholar
  57. Zhu, Q., Qiu, F., Quan, Y., Sun, Y., Liu, S., & Zou, Z. (2005). Solid-electrolyte NASICON thick film CO2 sensor prepared on small-volume ceramic tube substrate. Materials Chemistry and Physics, 91, 338–342. doi:10.1016/j.matchemphys.2004.11.036.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Biosystems EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations