Pulsed Light Treatments for Food Preservation. A Review

  • Gemma Oms-Oliu
  • Olga Martín-Belloso
  • Robert Soliva-Fortuny
Review Paper


Consumers demand high-quality processed foods with minimal changes in nutritional and sensory properties. Nonthermal methods are considered to keep food quality attributes better than traditional thermal processing. Pulsed light (PL) is an emerging nonthermal technology for decontamination of food surfaces and food packages, consisting of short time high-peak pulses of broad spectrum white light. It is considered an alternative to continuous ultraviolet light treatments for solid and liquid foods. This paper provides a general review of the principles, mechanisms of microbial inactivation, and applications of PL treatments on foods. Critical process parameters that are needed to be optimized for a better efficiency of PL treatments are also discussed. PL has considerable potential to be implemented in the food industry. However, technological problems need to be solved in order to avoid food overheating as well as to achieve better penetration and treatment homogeneity. In addition, a more extensive research is needed to understand how PL affects quality food attributes.


Pulsed light Nonthermal technology Microorganisms Food Quality 



This work was supported by the Ministerio de Ciencia y Tecnología (Spain) through the Project AGL2006-04775/ALI.


  1. Anderson, J. G., Rowan, N. J., MacGregor, S. J., Fouracre, R. A., & Farish, O. (2000). Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Transactions on Plasma Science, 28(1), 83–88. doi: 10.1109/27.842870.CrossRefGoogle Scholar
  2. Baka, M., Mercier, J., Corcruff, R., Castaigne, F., & Arul, J. (1999). Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science, 64, 1068–1072. doi: 10.1111/j.1365-2621.1999.tb12284.x.CrossRefGoogle Scholar
  3. Barbosa-Canovas, G. V., Pothakamury, U. R., Palou, E., & Swanson, B. G. (1998). Nonthermal preservation of foods pp. 139–161. New York: Marcel Dekker.Google Scholar
  4. Barka, E. A. (2001). Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon esculentum) fruits in response to low amounts of UV-C. Australian Journal of Plant Physiology, 28, 785–791.Google Scholar
  5. Bialka, K. L., & Demirci, A. (2007). Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. Journal of Food Science, 72(9), 391–396. doi: 10.1111/j.1750-3841.2007.00517.x.CrossRefGoogle Scholar
  6. Bialka, K. I., & Demirci, A. (2008). Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries. Journal of Food Science, 00(0), 1–7.Google Scholar
  7. Bialka, K. I., Demirci, A., & Purl, V. M. (2008). Modelling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting form exposure to ozone or pulsed UV-light. Journal of Food Engineering, 85(3), 444–449. doi: 10.1016/j.jfoodeng.2007.08.007.CrossRefGoogle Scholar
  8. Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. (2000). Existing and potential applications of ultraviolet light in the food industry—A critical review. Journal of the Science of Food and Agriculture, 80, 637–645. doi: 10.1002/(SICI)1097-0010(20000501)80:6<637::AID-JSFA603>3.0.CO;2-1.CrossRefGoogle Scholar
  9. Cantos, E., Espin, J. C., & Tomas-Barbaran, F. A. (2002). Postharvest stilbene enrichment of red and white table grape varieties using UVC irradiation pulses. Journal of Agricultural and Food Chemistry, 50, 6322–6329. doi: 10.1021/jf020562x.CrossRefGoogle Scholar
  10. Chung, S. Y., Yang, W., & Krishnamurthy, K. (2008). Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter. Journal of Food Science, 73(5), 400–404. doi: 10.1111/j.1750-3841.2008.00784.x.CrossRefGoogle Scholar
  11. Demirci, A. (2002). Novel processing technologies for food safety. Association of Food Drug Officials, 64(4), 1–8.Google Scholar
  12. Dhallewin, G., Schirra, M., Manueddu, E., Piga, A., & Ben-Yehoshua, S. (1999). Scoparone and scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date. Journal of the American Society for Horticultural Science, 124, 702–707.Google Scholar
  13. Dong, Y. H., Mitra, D., Kootstra, A., Lister, C., & Lancaster, J. (1995). Postharvest stimulation of skin color in Royal-gala apple. Journal of the American Society for Horticultural Science, 120, 95–100.Google Scholar
  14. Dunn, J. (1996). Pulsed light and pulsed electric field for foods and eggs. Poultry Science, 75(9), 1133–1136.Google Scholar
  15. Dunn, J., Bushnell, A., Ott, T., & Clark, W. (1997). Pulsed white light food processing. Cereal Foods World, 42, 510–515.Google Scholar
  16. Dunn, J. E., Clark, R. W., Asmus, J. F., Pearlman, J. S., Boyer, K., Painchaud, F., et al. (1989). Methods for preservation of foodstuffs. US Patent number 4871559.Google Scholar
  17. Dunn, J. E., Clark, R. W., Asmus, J. F., Pearlman, J. S., Boyer, K., Painchaud, F., et al. (1991). Methods for preservation of foodstuffs. US patent number 5034235.Google Scholar
  18. Dunn, J., Ott, T., & Clark, W. (1995). Pulsed light treatment of food and packaging. Food Technologist, 49(9), 95–98.Google Scholar
  19. El Ghaouth, A., Wilson, C. L., & Callahan, A. M. (2003). Induction of chitinase, beta-1,3-glucanase, and phenylalanine ammonia lyase in peach fruit by UV-C treatment. Phytopathology, 93, 349–355. doi: 10.1094/PHYTO.2003.93.3.349.CrossRefGoogle Scholar
  20. Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., & Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Canadian Journal of Microbiology, 53, 813–821. doi: 10.1139/W07-042.CrossRefGoogle Scholar
  21. Elmnasser, N., Dalgalarrondo, M., Orange, N., Bakhrouf, A., Haertlé, T., Federighi, M., et al. (2008). Effect of pulsed-light treatment on milk proteins and lipids. Journal of Agricultural and Food Chemistry, 56, 1984–1991. doi: 10.1021/jf0729964.CrossRefGoogle Scholar
  22. Fine, F., & Gervais, P. (2004). Efficiency of pulsed UV light for microbial decontamination of food powders. Journal of Food Protection, 67, 787–792.Google Scholar
  23. Food and Drug Administration. (2000). Kinetics of microbial inactivation for alternative food processing technologies: pulsed light technology. Available at:∼comm/ift-puls.html. Accessed 2 May 2008.
  24. Gómez-López, V. M., Devlieghere, F., Bonduelle, V., & Debevere, J. (2005a). Factors affecting the inactivation of microorganisms by intense light pulses. Journal of Applied Microbiology, 99, 460–470. doi: 10.1111/j.1365-2672.2005.02641.x.CrossRefGoogle Scholar
  25. Gómez-López, V. M., Devlieghere, F., Bonduelle, V., & Debevere, J. (2005b). Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology, 103, 79–89. doi: 10.1016/j.ijfoodmicro.2004.11.028.CrossRefGoogle Scholar
  26. Gómez-López, V. M., Ragaert, P., Debevere, J., & Devlieghere, F. (2007). Pulsed light for food decontamination: A review. Trends in Food Science & Technology, 18, 464–473. doi: 10.1016/j.tifs.2007.03.010.CrossRefGoogle Scholar
  27. Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Review: Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10, 137–147. doi: 10.1177/1082013204044359.CrossRefGoogle Scholar
  28. Hillegas, S. L., & Demirci, A. (2003). Inactivation of Clostridium sporogenes in clover honey by pulsed UV-light treatment. Agricultural Engineering International, V. Manuscritp FP 03 009.Google Scholar
  29. Hiramoto T. (1984). Method of sterilization. US Patent number 4464336.Google Scholar
  30. Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33, 179–197. doi: 10.1016/S0968-4328(01)00011-7.CrossRefGoogle Scholar
  31. Hoornstra, E., de Jong, G., & Notermans, S. (2002). Preservation of vegetables by light. In Conference frontiers in microbial fermentation and preservation (pp. 75–77). The Netherlands: Wageningen.Google Scholar
  32. Jun, S., Irudayaraj, J., Demirci, A., & Geiser, D. (2003). Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores. International Journal of Food Science & Technology, 38, 883–888. doi: 10.1046/j.0950-5423.2003.00752.x.CrossRefGoogle Scholar
  33. Koutchma, T. (2008). UV light for processing foods. Ozone: Science & Engineering, 30, 93–98. doi: 10.1080/01919510701816346.CrossRefGoogle Scholar
  34. Koutchma, T., Keller, S., Parisi, B., & Chirtel, S. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science & Emerging Technologies, 5, 179–189. doi: 10.1016/j.ifset.2004.01.004.CrossRefGoogle Scholar
  35. Krishnamurthy, K., Demirci, A., & Irudayaraj, J. (2004). Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. Journal of Food Protection, 67, 1027–1030.Google Scholar
  36. Krishnamurthy, K., Demirci, A., & Irudayaraj, J. M. (2007). Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. Journal of Food Science, 72(7), M233–M239. doi: 10.1111/j.1750-3841.2007.00438.x.CrossRefGoogle Scholar
  37. Krishnamurthy, K., Tewari, J. C., Irudayaraj, J., & Demirci, A. (2008). Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0084-8.
  38. Lagunas-Solar, M. C., Piña, C., MacDonald, J. D., & Bolkan, L. (2006). Development of pulsed UV light processes for surface fungal disinfection of fresh fruits. Journal of Food Protection, 69(2), 376–384.Google Scholar
  39. Lamikanra, O., Kuenemon, D., Ukuku, D., & Bett-Garber, K. L. (2005). Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. Journal of Food Science, 70(9), C534–C539.Google Scholar
  40. Lamont, Y., Rzezutka, A., Anderson, J. G., MacGregor, S. J., Given, M. J., Deppe, C., et al. (2007). Pulsed UV-light inactivation of poliovirus and adenovirus. Letters in Applied Microbiology, 54(5), 564–567. doi: 10.1111/j.1472-765X.2007.02261.x.CrossRefGoogle Scholar
  41. MacGregor, S. J., Rowan, N. J., Mcllvaney, L., Anderson, J. G., Fouracre, R. A., & Farish, O. (1997). Light inactivation of food-related pathogenic bacteria using a pulsed power source. Letters in Applied Microbiology, 27, 67–70. doi: 10.1046/j.1472-765X.1998.00399.x.CrossRefGoogle Scholar
  42. Marquenie, D., Geeraerd, A. H., Lammertyn, J., Soontjens, C., Van Impe, J. F., Michiels, C. W., et al. (2003a). Combinations of pulsed light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International Journal of Food Microbiology, 85, 185–196. doi: 10.1016/S0168-1605(02)00538-X..CrossRefGoogle Scholar
  43. Marquenie, D., Michiels, C. W., Van Impe, J. F., Schrevens, E., & Nicolaï, B. N. (2003b). Pulsed white light in combinations with UV-C and heat to reduce storage rot of strawberry. Postharvest Biology and Technology, 28, 455–461. doi: 10.1016/S0925-5214(02)00214-4.CrossRefGoogle Scholar
  44. McDonald, K. F., Curry, R. D., Clevenger, T. E., Unklesbay, K., Eisenstark, A., & Golden, J. (2000). A comparison of pulsed & continuous ultraviolet light sources for the decontamination of surfaces. IEEE Transactions on Plasma Science, 28, 1581–1587. doi: 10.1109/27.901237.CrossRefGoogle Scholar
  45. Mercier, J., Roussel, D., Charles, M. T., & Arul, J. (2000). Systemic and local responses associated with UV- and pathogen-induced resistance to Botrytis cinerea in stored carrot. Phytopathology, 90, 981–986. doi: 10.1094/PHYTO.2000.90.9.981.CrossRefGoogle Scholar
  46. Otaki, M., Okuda, A., Tajima, K., Iwasaki, T., Kinoshita, S., & Ohgaki, S. (2003). Inactivation differences of microorganisms by low pressure UV and pulsed xenon lamps. Water Science and Technology, 47, 185–190.Google Scholar
  47. Ozer, N. P., & Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science & Technology, 41, 354–360. doi: 10.1111/j.1365-2621.2005.01071.x.CrossRefGoogle Scholar
  48. Roberts, P., & Hope, A. (2003). Virus inactivation by high intensity broad spectrum pulsed light. Journal of Virological Methods, 110, 61–65. doi: 10.1016/S0166-0934(03)00098-3.CrossRefGoogle Scholar
  49. Rowan, N. J., MacGregor, S. J., Anderson, J. G., Fouracre, R. A., McIlvaney, L., & Farish, O. (1999). Pulsed-light inactivation of food-related microorganisms. Applied and Environmental Microbiology, 65, 1312–1315.Google Scholar
  50. Seo, K. H., & Frank, J. F. (1999). Attachment of Escherichia coli 0157:H7 to lettuce leaf surfaces and bacterial viability in response to chlorine treatment as demonstrated by using confocal scanning laser microscopy. Journal of Food Protection, 62(1), 3–9.Google Scholar
  51. Shama, G. (1992). Ultraviolet irradiation apparatus for disinfecting liquids of high ultraviolet absorptivities. Letters in Applied Microbiology, 15, 69–72. doi: 10.1111/j.1472-765X.1992.tb00727.x.CrossRefGoogle Scholar
  52. Shama, G. (1999). Ultraviolet light. In R. K. Robinson, C. Batt, & P. Patel (Eds.), Encyclopedia of food microbiology—3 (pp. 2208–2214). London: Academic.Google Scholar
  53. Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44, 1–8. doi: 10.1016/j.postharvbio.2006.11.004.CrossRefGoogle Scholar
  54. Sharma, R. R., & Demirci, A. (2003). Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modelling. Journal of Food Science, 68, 1448–1453. doi: 10.1111/j.1365-2621.2003.tb09665.x.CrossRefGoogle Scholar
  55. Shuwaish, A., Figueroa, J. E., Silva, J. L. (2000). Pulsed light treated prepackaged catfish fillets. IFT Annual Meeting, 10–14 June 2000, Dallas, USA.Google Scholar
  56. Smith, W. L., Lagunas-Solar, M. C., & Cullor, J. S. (2002). Use of pulsed ultraviolet laser light for the cold pasteurization of bovine milk. Journal of Food Protection, 65(9), 1480–1482.Google Scholar
  57. Takeshita, K., Shibato, J., Sameshima, T., Fukunaga, S., Isobe, S., Arihara, K., et al. (2003). Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology, 85, 151–158. doi: 10.1016/S0168-1605(02)00509-3.CrossRefGoogle Scholar
  58. Tonon, F., & Agoulon, A. (2003). Lumiere pulse, principe et application au cas des solutions liquids. Industries Agro-alimentaires, la conservation de demain, 4e edition, 20 November 2003, Talence, France.Google Scholar
  59. Turtoi, M., & Nicolau, A. (2007). Intense light pulse treatment as alternative method for mould spores destruction on paper-polyethylene packaging material. Journal of Food Engineering, 83, 47–53. doi: 10.1016/j.jfoodeng.2006.11.017.CrossRefGoogle Scholar
  60. Uesugi, A. R., Woodling, S. E., & Moraru, C. I. (2007). Inactivation kinetics and factors of variability in the pulsed light treatment of Listeria innocua cells. Journal of Food Protection, 70(11), 2518–2525.Google Scholar
  61. Wang, T., MacGregor, S. J., Anderson, J. G., & Woolsey, G. A. (2005). Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Research, 39, 2921–2925. doi: 10.1016/j.watres.2005.04.067.CrossRefGoogle Scholar
  62. Wekhof, A. (2000). Disinfection with flash lamps. PDA Journal of Pharmaceutical Science and Technology, 54, 264–276.Google Scholar
  63. Wekhof, A. (2003). Sterilization of packaged pharmaceutical solutions, packaging and surgical tools with pulsed UV light. In: Proceedings of the Second International Congress UV Technologies, 9–11 July 2003, Vienna, Austria.Google Scholar
  64. Wekhof, A., Trompeter, F. J., & Franken, O. (2001). Pulse UV disintegration (PUVD): A new sterilisation mechanism for packaging and broad medical-hospital applications. In: Proceedings of the First International Conference on Ultraviolet Technologies, 14–16 June 2001, Washington, DC, USA.Google Scholar
  65. Woodling, S. E., & Moraru, C. I. (2005). Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless-steel surfaces. Journal of Food Science, 70(7), M345–M351. doi: 10.1111/j.1365-2621.2005.tb11478.x.CrossRefGoogle Scholar
  66. Wright, J. R., Summer, S. S., Hackney, C. R., Pierson, M. D., & Zoecklein, B. W. (2000). Efficacy of ultraviolet light for reducing Escherichia coli O:157:H7 in unpasteurized apple cider. Journal of Food Protection, 63(5), 563–567.Google Scholar
  67. Wuytack, E. Y., Phuong, L. D. T., Aertsen, A., Reyns, K. M. F., Marquenie, D., De Ketelaere, B., et al. (2003). Comparison of sublethal injury induced in Salmonella enterica serovar typhimurium by heat and by different nonthermal treatments. Journal of Food Protection, 66, 31–37.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Gemma Oms-Oliu
    • 1
  • Olga Martín-Belloso
    • 1
  • Robert Soliva-Fortuny
    • 1
  1. 1.Department of Food Technology, TPV-XartaUniversity of LleidaLleidaSpain

Personalised recommendations