Food and Bioprocess Technology

, Volume 3, Issue 3, pp 441–449 | Cite as

Evaluation of Antioxidant Properties of Dry Soup Mix Extracts Containing Dill (Anethum sowa L.) Leaf

  • M. N. Rekha
  • A. Ramesh YadavEmail author
  • Shylaja Dharmesh
  • A. S. Chauhan
  • R. S. Ramteke
Original Paper


Soups are consumed for nutritive benefits and also by patients whose intake of solids is considerably reduced due to several pathological reasons. Dehydrated soup mix is a convenient product due to its less volume and long storage life at ambient temperatures. Soup mix formulated with functional ingredients, modified potato flour (thickening agent), and dill leaf powder (DLP) was evaluated for its antioxidant properties. Aqueous and methanolic extracts of soup mix were prepared, and their total phenolic content, reducing power ability, and free radical-scavenging activity were determined. Significant improvement in total phenolics was observed as a result of addition of DLP that led to enhancement of its antioxidant properties. The phenolic acid profile of the soup mix base contained mainly tannic acid, while protocatechuic, gentisic, vanillic acid, and syringic acids were contributed by DLP. The reducing power ability of soup mix was increased by about 2.5 times in aqueous and about seven times in methanolic extracts, as a result of DLP addition. Concentration-dependent scavenging activity was observed, and IC50 (scavenging of 50% 1,1-diphenyl-2-picrylhydrazyl radical) values were reduced from 16.5 to 3.8 μg/mL in aqueous and from 9.1 to 3.9 μg/mL in methanolic extracts as a result of addition of DLP. The moisture–humidity relationship studies of soup mix conducted to determine its sorption behavior showed that the product exhibited caking tendency above 8.9% moisture corresponding to a critical relative humidity of 56%.


Dill Anethum sowa Soup mix Antioxidant activity Scavenging activity Reducing power Sorption behavior Phenolic acids 


  1. Aggarwal, K. K., Khanuja, S. P. S., Ahmed, A., Santha Kumar, T. R., & Gupta, V. K. (2002). Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour and Fragrance Journal, 17, 59–63. doi: 10.1002/ffj.1040.CrossRefGoogle Scholar
  2. AOAC International (2000). Official methods of analysis (17th ed.). Maryland, USA: AOAC.Google Scholar
  3. Arro, R. I., & Leon, S. Y. D. (1982). Utilization of rice bran in dry soup mix. UP—Home Economic Journal, 10, 76–90.Google Scholar
  4. Avila-Sosa, R., Gastelum- Franco, M. G., Camacho-Davilla, A., Torres-Munoz, J. V., & Nevarez-Moorillon, G. V. (2008). Extracts of Mexican Oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food and Bioprocess Technology (in press). doi: 10.1007/s11947-008-0085-7.
  5. Benvenuti, S., Pellati, F., Melegari, M., & Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and a radical scavenging acitivity of Rubus, Ribes and Aronia. Food and Chemical Toxicology, 69, 164–169.Google Scholar
  6. Braca, A., Fico, G., Morelli, I., Simone De Tome, F., & Tommasi, N. D. (2003). Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. Journal of Ethnopharmacology, 86, 63–67. doi: 10.1016/S0378-8741(03)00043-6.CrossRefGoogle Scholar
  7. Bzducha, A., & Wolosiak, R. (2006). Synergestic effect of antioxidant activity of casein and its enzymatic hydrolysate in combination with ascorbic acid and b-carotene in model oxidation systems. Technologia Alimentaria, 5, 113–133.Google Scholar
  8. Chayu, C. C., Tsai, S. Y., Ko, P. T., & Mau, J. L. (2002). Antioxidant properties of solvent extracts from Terminalia catappa leaves. Food Chemistry, 78, 483–488. doi: 10.1016/S0308-8146(02)00162-0.CrossRefGoogle Scholar
  9. Chethan, S., & Malleshi, N. G. (2007). Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chemistry, 105, 862–870. doi: 10.1016/j.foodchem.2007.02.012.CrossRefGoogle Scholar
  10. Chung, H. J. (2004). Antioxidative and antimicrobial activities of cassia (Cinnamomum cassia) and dill (Anethum graveolens L.) essential oils. Journal of Food and Nutrition, 9, 300–305.CrossRefGoogle Scholar
  11. Delouee, S. A., & Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102, 1233–1240. doi: 10.1016/j.foodchem.2006.07.013.CrossRefGoogle Scholar
  12. Guisti, A. M., Bignetti, E., & Cannella, C. (2008). Exploring new frontiers in total food quality definition and assessment: From chemical to neurochemical properties. Food and Bioprocess Technology 1, 130–142. doi: 10.1007/s11947-007-0043-9.Google Scholar
  13. Gurudip Singh, , Sumithra Maurya, , Lampasona, M. P. D., & Catalan, C. (2005). Chemical constituents, antimicrobial investigations, and antioxidative potentials of Anethum graveolens L. essential oil and acetone extract. Journal of Food Science, 70, 208–215.Google Scholar
  14. Hiramoto, K., Miura, Y., Ohnuki, G., Kato, T., & Kikugawa, K. (2002). Are water-soluble natural antioxidants synergestic in combination with a-Tocopherol. Journal of Oleo Science, 51, 569–576.Google Scholar
  15. Hunter, R. S. (1975). The measurement of appearance. New York, NY: Wiley.Google Scholar
  16. Huopalahti, R., & Linko, R. R. (1983). Composition and content of aroma compounds in Dill. Anethum graveolens L., at three different growth stages. Journal of Agricultural and Food Chemistry, 31, 331–333. doi: 10.1021/jf00116a036.CrossRefGoogle Scholar
  17. Imeh, U., & Khokhar, S. (2002). Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. Journal of Agricultural and Food Chemistry, 50, 6301–6306. doi: 10.1021/jf020342j.CrossRefGoogle Scholar
  18. Jayadeep, A., Singh, V., Rao, B. V. S., Srinivas, A., & Ali, S. Z. (2008). Effect of physical processing of commercial de-oiled rice bran on particle size distribution, and content of chemical and bio-functional components. Food and Bioprocess Technology (in press). doi: 10.1007/s11947-008-0094-6.
  19. Jimmenez, E. A., Rincon, M., Pulido, R., & Fulgenicio, S. C. (2001). Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. Journal of Agricultural and Food Chemistry, 49, 5489–5493. doi: 10.1021/jf010147p.CrossRefGoogle Scholar
  20. Kendall, P. (2000). Good food sources of antioxidants. Colarado State University Extension—Nutrition Resources. Available at:
  21. Khiari, Z., Markis, D. M., & Kefalas, P. (2008). An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol- based solvent systems. Food and Bioprocess Technology (in press). doi: 10.1007/s11947-007-0044-8.
  22. Koelva, I. I., Beek, T. A., Linssen, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study of three testing methods. Phytochemical Analysis, 13, 8–17. doi: 10.1002/pca.611.CrossRefGoogle Scholar
  23. Kumar, G. S., Harish, N., Dharmesh, S. M., & Salimath, P. V. (2006). Free and bound phenolic antioxidants in amla (Emblica officinalis) and turmeric (Curcuma longa). Journal of Food Composition and Analysis, 19, 446–452. doi: 10.1016/j.jfca.2005.12.015.CrossRefGoogle Scholar
  24. Lisiewska, Z., Kmeicik, W., & Korus, A. (2006). Contents of vitamin C, carotenoids, chlorophylls and polyphenols in green pastes of dill (Anethum graveolens L.) depending on plant height. Journal of Food Composition and Analysis, 19, 134–140. doi: 10.1016/j.jfca.2005.04.009.CrossRefGoogle Scholar
  25. Martins, R. C., Lopes, V. V., Vicente, A. A., & Teixiera, J. A. (2008). Computational shelf-life dating: Complex systems approaches to food quality and safety. Food and Bioprocess Technology, 1, 207–222. doi: 10.1007/s11947-008-0071-0.CrossRefGoogle Scholar
  26. Opara, L. U., Al-Ani, M. R., & Al-Shuaibi, Y. S. (2008). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology (in press). doi: 10.1007/s11947-008-0095-5.
  27. Raghavan, S., & Hultin, H. O. (2005). Effect of solvent polarity on selective incorporation of exogenous d-tocopherol into muscle membranes. Journal of Muscle Foods, 16, 117–125. doi: 10.1111/j.1745-4573.2005.08704.x.CrossRefGoogle Scholar
  28. Rekha, M. N., Chauhan, A. S., Yadav, A. R., Guha, M., & Ramteke, R. S. (2005). A process for the preparation of instant soup mix from Indian Dill (Anethum sowa). Patent no. WO/70233/2005.Google Scholar
  29. Riddolls, D. H. (1972). Instant soup, sauce and gravy mixes. Canadian Patent no. 891 975Google Scholar
  30. Rockland, L. B. (1960). Saturated salt solutions of static control of relative humidity between 5°C and 40°C. Analytical Chemistry, 32, 1375–1377. doi: 10.1021/ac60166a055.CrossRefGoogle Scholar
  31. Sabanis, D., & Tzia, C. (2008). Effect of rice, corn and soy flour addition on characteristics of bread produced from different cultivars. Food and Bioprocess Technology (in press). doi: 10.1007/s11947-007-0037-7.
  32. Sanchez-Moreno, C. S., Cano, M. P., de Ancos, B., & Plaza, L. (2004). Consumption of high pressurized vegetable soup increases plasma vitamin C and decreases oxidative stress and inflammatory biomarkers in healthy humans. Journal of Nutrition, 134, 3021–3025.Google Scholar
  33. Shankaracharya, B. N., Jaganmohan Rao, L., Puranaik, J., & Nagalakshmi, S. (2000). Studies on chemical and technological aspects of Indian Dill seed (Anethum sowa. Rxb.). Journal of Food Science and Technology, 37, 368–371.Google Scholar
  34. Singh, S., Ghosh, S., & Patil, G. R. (2003). Development of a mushroom–whey soup powder. International Journal of Food Science & Technology, 38, 217–224. doi: 10.1046/j.1365–2621.2003.00661.x.CrossRefGoogle Scholar
  35. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  36. Turner, L. (2002). The top 10 antioxidant foods. Crumcreek Mills. Available at:
  37. Wealth of India, (1986). Anethum sowa. In Raw materials. New Delhi: CSIR.Google Scholar
  38. Wu, X., Beecher, R. G., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52, 4026–4037. doi: 10.1021/jf049696w.CrossRefGoogle Scholar
  39. Yadav, A. R., Guha, M., Reddy, S. Y., Tharanathan, R. N., & Ramteke, R. S. (2007a). Physical properties of acetylated and enzyme modified potato and sweet potato flours. Journal of Food Science, 72, E249–E253. doi: 10.1111/j.1750-3841.2007.00363.x.CrossRefGoogle Scholar
  40. Yadav, A. R., Guha, M., Tharanathan, R. N., & Ramteke, R. S. (2006). Influence of drying conditions on functional properties of potato flour. European Food Research and Technology, 223, 553–560. doi: 10.1007/s00217-005-0237-1.CrossRefGoogle Scholar
  41. Yadav, A. R., Mahadevamma, S., Tharanathan, R. N., & Ramteke, R. S. (2007b). Characteristics of acetylated and enzyme modified potato and sweet potato flours. Food Chemistry, 103, 1119–1126. doi: 10.1016/j.foodchem.2006.10.012.CrossRefGoogle Scholar
  42. Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43, 27–32. doi: 10.1021/jf00049a007.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • M. N. Rekha
    • 1
  • A. Ramesh Yadav
    • 1
    Email author
  • Shylaja Dharmesh
    • 2
  • A. S. Chauhan
    • 1
  • R. S. Ramteke
    • 1
  1. 1.Department of Fruit and Vegetable TechnologyCentral Food Technological Research InstituteMysoreIndia
  2. 2.Department of Biochemistry and NutritionCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations