Food and Bioprocess Technology

, Volume 3, Issue 2, pp 239–246 | Cite as

Physicochemical and Enzymatic Properties of Five Kiwifruit Cultivars during Cold Storage

  • Mahboube Zolfaghari
  • Mohammad Ali SahariEmail author
  • Mohsen Barzegar
  • Hamidreza Samadloiy
Original Paper


Samples of Abbot, Alison, Bruno, Monty, and Hayward cultivars of kiwifruit (Actinidia deliciosa) were obtained from the Iran Research Center of Citrus (Tonekabon, located in north of Iran) and their physicochemical properties were studied during cold storage (at T = 1 ± 1 °C, RH = 80 ± 5%) at 0-, 9-, and 18-week intervals. The mean chemical composition of the fruits were as follows: ash = 0.66–0.96%, moisture = 75.2–84.7%, starch = 0.3–7.0%, and ascorbic acid = 54.8–261.0; K = 125.0–372.0 mg 100 g−1 fresh weight, Mg = 18.0–32.0 mg 100 g−1 fresh weight, Na = 1.4–3.1 mg 100 g−1 fresh weight, Fe = 0.17–0.52 mg 100 g−1 fresh weight, Cu = 0.04–0.24 mg 100 g−1 fresh weight, Zn = 0.16–0.49 mg 100 g−1 fresh weight, Mn = 0.04–0.10 mg 100 g−1 fresh weight, and P = 25.2–49.3 mg 100 g−1 fresh weight; glucose = 0.7–2.39%, fructose = 1.20–3.13%, and sucrose = 0.0–5.8%. At the same time, the values of the parameters °Brix = 6.5–14.8% and acidity = 1.8–2.5% of the studied cultivars (mutual effects of cultivar and storage time) were investigated. The increase in peroxidase (POX = 0.0–6.65 U ml−1) and the decrease in pectinesterase (PE; poor activity to 0) activities were also determined. The statistical analysis showed that the Bruno cultivar had the highest content of ascorbic acid (115.0–261.0 mg 100 g−1 fresh weight), which is an important compound in fruits during storage, while Hayward had the best overall quality particularly with regards to its resistance to softening. This study confirms that long-term cold storage at 1 ± 1 °C and 80 ± 5% RH is suitable for maintaining the highest quality of Iranian grown cultivars of kiwifruit.


Kiwifruit Cold storage Actinidia deliciosa Mineral elements Sugars Ascorbic acid Peroxidase Pectinesterase 


  1. Adao, R. C., Beatriz, M., & Gloria, A. (2005). Bioactive amines and carbohydrate changes during ripening of Prata banana (Musa acuminate×M. Balbisiana). Food Chemistry, 90, 705–711. doi: 10.1016/j.foodchem.2004.05.020.CrossRefGoogle Scholar
  2. Agar, I. T., Massantini, R., Hess, B. P., & Kadar, A. A. (1999). Postharvest CO2 and ethylene production and quality maintenance of fresh-cut kiwifruit slices. Journal of Food Science, 64, 433–440. doi: 10.1111/j.1365-2621.1999.tb15058.x.CrossRefGoogle Scholar
  3. Anonymous. (2006). FAO Corporate Document Repository. The pacific islands food composition tables (2nd ed.). Agriculture Department PDF version more details.Google Scholar
  4. Antunes, M. D. C., & Sfakiotakis, E. M. (2002). Ethylene biosynthesis and ripening behaviour of Hayward kiwifruit subjected to some controlled atmospheres. Postharvest Biology and Technology, 26, 167–179. doi: 10.1016/S0925-5214(02)00040-6.CrossRefGoogle Scholar
  5. AOAC. (1990). Official methods of analysis. Association of Official Analytical Chemists (15th ed.). In K. Helriched (ed). Washington, DC, USA: AOAC.Google Scholar
  6. Bernardez, M. M., Miguelez, D. M., & Queijeiro, J. G. (2004). HPLC determination of sugars in cultivars of chestnut fruits from Galicia (Spain). Journal of Food Composition and Analysis, 17, 63–67. doi: 10.1016/S0889-1575(03)00093-0.CrossRefGoogle Scholar
  7. Burdon, J., Mcleond, D., Lallu, N., Gamble, J., Petley, M., & Gunson, A. (2004). Consumer evaluation of Hayward kiwifruit of different at-harvest dry matter contents. Postharvest Biology and Technology, 34, 245–255. doi: 10.1016/j.postharvbio.2004.04.009.CrossRefGoogle Scholar
  8. Castaldo, D., Lo Vio, A., Trifiro, A., & Gherardi, S. (1992). Composision of Italian kiwi (Actinidia chinensis) puree. Journal of Agricultural and Food Chemistry, 40, 594–598. doi: 10.1021/jf00016a013.CrossRefGoogle Scholar
  9. Cotter, R. L., Macrae, E. A., Feruson, A. R., McMath, K. L., & Brennan, C. J. (1991). A comparison of the ripening, storage and sensory qualities of 7 cultivars of kiwifruit. Journal of Horticultural Science, 66, 291–300.Google Scholar
  10. Esti, M., Messia, M. C., Bertocchi, P., Sinesio, F., Moneta, E., Nicotra, A., et al. (1998). Chemical compounds and sensory assessment of kiwifruit (Actinidia chinensis (planch) var. chinensis): electrochemical and multivariate analyses. Food Chemistry, 61, 293–300. doi: 10.1016/S0308-8146(97)00052-6.CrossRefGoogle Scholar
  11. Fuster, C., Prestamo, G., & Cano, M. P. (1994). Drip loss, peroxidase & sensory changes in kiwifruit slices during frozen storage. Journal of the Science of Food and Agriculture, 64, 23–29. doi: 10.1002/jsfa.2740640105.CrossRefGoogle Scholar
  12. Gallego, P. P., & Zarra, I. (1998). Cell wall autolysis during kiwifruit development. Annals of Botany, 81, 91–96. doi: 10.1006/anbo.1997.0536.CrossRefGoogle Scholar
  13. Hendrik, V. G., Chingying, L., Eduordo, L. K., Mirjam, S., & Adel, A. K. (1992). Compositional characterization of prune juice. Journal of Agricultural and Food Chemistry, 40, 784–789. doi: 10.1021/jf00017a016.CrossRefGoogle Scholar
  14. Jordan, R. B., Walton, E. F., Klages, K. U., & Seelye, R. J. (2000). Postharvest fruit density as an indictor of dry matter and ripened soluble solids of kiwifruit. Postharvest Biology and Technology, 20, 163–173. doi: 10.1016/S0925-5214(00)00125-3.CrossRefGoogle Scholar
  15. Kimball, D. A. (1999). Citrus processing, a complete guide (p. 450, 2nd ed.). Gaithersburg, Maryland: Chapman and Hall Food Science Book.Google Scholar
  16. Llano, K. M., Haedo, A. S., Gerschenson, L. N., & Rojas, A. M. (2003). Mechanical and biochemical response of kiwifruit tissue to steam blanching. Food Research International, 36, 767–775. doi: 10.1016/S0963-9969(03)00071-1.CrossRefGoogle Scholar
  17. Mainland, C. M. (1998). Kiwifruit. North Carolina Cooperative Extension Service. Retrieved from
  18. Manolopoulou, H., & Papadopoulou, P. (1998). A study of respiratory and physico-chemical changes of four kiwifruit cultivars during cold-storage. Food Chemistry, 63, 529–534. doi: 10.1016/S0308-8146(98)00017-X.CrossRefGoogle Scholar
  19. Marangoni, A. G., Jackman, R. L., & Stanley, D. W. (1995). Chilling-associated softening of tomato fruit is related to increased pectinmethylesterase activity. Journal of Food Science, 60, 1277–1281. doi: 10.1111/j.1365-2621.1995.tb04572.x.CrossRefGoogle Scholar
  20. Marsh, K., Attanayake, S., Walker, S., Gunson, A., Boldingh, H., & Macrae, E. (2004). Acidity and taste in kiwifruit. Postharvest Biology and Technology, 32, 159–168. doi: 10.1016/j.postharvbio.2003.11.001.CrossRefGoogle Scholar
  21. Park, Y. S., Jung, S. T., & Gorinstein, S. (2006). Ethylene treatment of Hayward kiwifruits (Actinidia deliciosa) during ripening and its influence on ethylene biosynthesis and antioxidant activity. Scientia Horticulturae, 108, 22–28. doi: 10.1016/j.scienta.2006.01.001.CrossRefGoogle Scholar
  22. Perez-Tello, G. O., Silva-Espinoza, B. A., Vargas-Arispuro, I., Briceno-Torres, B. O., & Martinez-Tellez, M. A. (2001). Effect of temperature on enzymatic and physiological factors related to chilling injury in Carambola fruit (Averrhao carambola L.). Biochemical and Biophysical Research Communications, 287, 841–851.Google Scholar
  23. Plaza, P. V., Tenorio, S. M., & Torija, A. (1992). Mineral content of exotic fruits increasingly eaten in Spain: kiwifruits. Alimentaria, 229, 59–61.Google Scholar
  24. Regina, C. A., & Beatrize, A. G. (2005). Bioactive amino and carbohydrate changes during of Prata banana. Food Chemistry, 90, 705–711. doi: 10.1016/j.foodchem.2004.05.020.CrossRefGoogle Scholar
  25. Sahari, M. A., Boostani, M., & Hamidi, E. Z. (2004). Effect of low temperature on the ascorbic acid content and quality characteristics of frozen strawberry. Food Chemistry, 86, 357–363. doi: 10.1016/j.foodchem.2003.09.008.CrossRefGoogle Scholar
  26. Sahari, M. A., Barzegar, M., & Radfar, R. (2007). Effect of varieties on the composition of dates (Phoenix dactylifera L.). Food Science and Technology International, 13(4), 269–275. doi: 10.1177/1082013207082244.CrossRefGoogle Scholar
  27. Tavarani, S., Degl’Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Harward kiwifruit. Food Chemistry, 107, 282–288. doi: 10.1016/j.foodchem.2007.08.015.CrossRefGoogle Scholar
  28. Thorp, T. G., Jie, Z., & Layyee, M. (1990). Horticultural characteristics of 7 pistillate and 3 staminate New Zealand cultivars of kiwifruit. New Zealand Journal of Crop and Horticultural Science, 18(4), 233–240.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Mahboube Zolfaghari
    • 1
  • Mohammad Ali Sahari
    • 1
    Email author
  • Mohsen Barzegar
    • 1
  • Hamidreza Samadloiy
    • 1
  1. 1.Food Technology Department, College of AgricultureTarbiat Modares UniversityTehranIran

Personalised recommendations