Food and Bioprocess Technology

, Volume 2, Issue 3, pp 328–336 | Cite as

Measure the Dissolved Oxygen Consumed by Red Wines in Aging Tanks

  • I. Nevares
  • M. Del Alamo
  • L. M. Cárcel
  • R. Crespo
  • C. Martin
  • L. Gallego
Original Paper

Abstract

The techniques of accelerated wine aging imply the addition of wood pieces of oak to the wine and the use of small doses of oxygen (micro-oxygenation). The dosage of extremely small amounts needs the knowledge of the dissolved oxygen (DO) at every moment in order to assure its correct assimilation. This work presents the first results of a study about the evolution of the dissolved oxygen content in red wines during alternative accelerated aging. Samples were treated in stainless steel vessels with wood pieces and low micro-oxygenation levels. French oak was applied with different toasting levels: light, medium, and high. Quality parameters of the wine were monitored. The knowledge of wine DO levels allowed developing a controlled micro-dosage in the different phases during the accelerated aging. The wine was able to use the whole amount of oxygen provided throughout the process.

Keywords

Aging Chips Color Luminescence Micro-oxygenation Oxygen Polyphenols Red wine 

Notes

Acknowledgements

This work was financially supported by VIN03-034-C2 project from Ministry of Science and Technology, Spain and VA124/04 and VA-16/2005 projects to Junta de Castilla y León. We would like to express our gratitude to Bajoz Cellar (Toro, Spain) for providing the wine

References

  1. Atasanova, V., Fulcrand, H., Cheynier, V., & Moutounet, M. (2002). Effect of microoxigenation on polyphenol changes occurring in the course of wine-making. Analytica Chimica Acta, 458, 15–27.Google Scholar
  2. Boulet, J. C., & Moutounet, M. (2000). Micro-oxigenación de los vinos in Enología: Fundamentos científicos y tecnológicos pp. 638–640. Madrid: Mundi-Prensa.Google Scholar
  3. Cano-López, M., Pardo-Minguez, F., López-Roca, J.-M., & Gómez-Plaza, E. (2006). Effect of microoxygenation on anthocyanin and derived pigment content and chromatic characteristics of red wines. American Journal of Enology and Viticulture, 57, 325–331.Google Scholar
  4. Clark, L.-C. (1956). Monitor and control of blood and tissue oxygen tension. Transactions of the American Society for Artificial Internal Organs, 2, 41–45.Google Scholar
  5. Del Alamo, M., Castro, R., Casado, L., Nevares, I., & Cárcel, L.-M. (2002). Influencia del tipo de barrica en el envejecimiento del Vino Tinto D.O. Cigales. Compuestos fenólicos y color. Viticultura y Enología Profesional, 82, 41–48.Google Scholar
  6. Del Alamo, M., Nevares, I., & Merino, S. (2004). Effect of aging system on wine anthocyanin and color composition during aging time in different oak woods. European Food Research and Technology, 219(2), 124–132.Google Scholar
  7. Folin, O., & Ciocalteau, R. (1927). On tyrosine and tryptophane determination in proteins. Journal of the Biological Chemistry, 3, 627–650.Google Scholar
  8. Glories, Y. (1984). The color of red wines. Conaissance de la Vigne et du Vin, 18, 195–217.Google Scholar
  9. Hidalgo, J. (2003). Tratado de Enología-II. Madrid: Mundi-Prensa.Google Scholar
  10. Kautsky, H. (1939). Quenching of luminescence by oxygen. Transactions of the Faraday Society, 35, 216–219.CrossRefGoogle Scholar
  11. Kelly, M., & Wollan, D. (2003). Micro-oxygenation of Wine in Barrels. The Australian & New Zealand Grapegrower & Winemaker, 447, 45 2003 Annual Technical Issue.Google Scholar
  12. Llaudy, M.-D., Canals, R., González-Manzano, S., Canals, J.-M., Santos-Buelga, C., & Zamora, F. (2006). Influence of micro-oxygenation treatment before oak aging on phenolic compounds composition, astringency, and color of red wine. Journal of Agricultural and Food Chemistry, 54, 4246–4252.CrossRefGoogle Scholar
  13. Masquelier, J., Michaud, J., & Triaud, J. (1965). Fractionation of wine leucoanthocyanins. Société de Pharmacie de Bordeaux, 104, 145–148.Google Scholar
  14. McCord, J. (2003). Application of toasted oak and micro-oxygenation to ageing of Cabernet Sauvignon wines. Australian and New Zealand Grapegrower and Winemaker, July, 43–53.Google Scholar
  15. Moutounet, M. (2003). La idea es que no se hagan distinciones entre los vinos que merezcan la barrica y la microoxigenación. ACenologia, interview. Accessed at: www.acenologia.com/ investigacion_entrevista62.htm
  16. Moutounet, M., & Mazauric, J. P. (1999). Dosage de micro-quantités d’oxygène dans les vins, no. 1085. Paris: Feuillets Verts de l’OIV.Google Scholar
  17. Moutounet, M., & Mazauric, J.-P. (2001). L’oxygène dissous dans les vins. Revue française d’œnologie, 186, 12–15.Google Scholar
  18. Moutounet, M., & Vidal, J. C. (2005). La medida del oxígeno disuelto en la bodega: ¿nuevo criterio para garantizar la calidad? Actas Las Innovaciones en Viticultura. Toulouse: Station Régionale ITV Midi-Pyrénées.Google Scholar
  19. Nevares, I., & del Alamo, M. (2008). Measurement of dissolved oxygen during red wines tank aging with chips and micro-oxygenation. Analytica Chimica Acta, 621(1), 68–78.CrossRefGoogle Scholar
  20. Official Journal of the European Community (EC) N°2165/2005.Google Scholar
  21. Paronetto, L. (1977). Polifenoli e tecnica enological pp. 115–116. Milan: Selepress.Google Scholar
  22. Piracci, A., Bucelli, P., Faviere, V., Giannetti, F., Scalzo, R., & Novello, E. (2001a). Frammenti legnosi e vino. Alcune specifiche techniche di chips e staves di rovere. L’Oenologo, 7(8), 97–104.Google Scholar
  23. Piracci, A., Bucelli, P., Faviere, V., Giannetti, F., Scalzo, R., & Novello, E. (2001b). Frammenti legnosi oak-chips e staves: contributo alla stabilizzazione del colore. L’Oenologo, 10, 103–109.Google Scholar
  24. Ribereau-Gayon, J. (1931). Oxydations et réductions dans les vins. France: Delmas.Google Scholar
  25. Roig, G., & Yêrle, S. (2003). Balance y Perspectivas De 10 Años De Microoxigenación. ACE Revista de enología, 30, 1–4.Google Scholar
  26. Saucier, C.-T., & Waterhouse, A.-L. (1999). Synergetic activity of catechin and other antioxidants. Journal of Agriculture and Food Chemistry, 47, 4491–4494.CrossRefGoogle Scholar
  27. Swain, T., & Hillis, W. (1959). The phenolic constituents of Prunus-Domestica—the cuantitative analysis of phenolic constituents. Journal of the Sciences and Food Agricultural, 10(1), 63–68.CrossRefGoogle Scholar
  28. USEPA (2006). ASTM International Method D 888–05 for measuring dissolved oxygen in the National Pollution Discharge Elimination System (NPDES) discharges. Washington D.C., USA. Interview Accessed at: www.epa.gov/region4/sesd/oqa/ATPLDOlet.pdf.
  29. Waterhouse, A.-L., & Laurie, V.-F. (2006). Oxidation of wine phenolics: a critical evaluation and hypotheses. American Journal of Enology and Viticulture, 57, 306–313.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • I. Nevares
    • 1
  • M. Del Alamo
    • 2
  • L. M. Cárcel
    • 1
  • R. Crespo
    • 1
  • C. Martin
    • 1
  • L. Gallego
    • 2
  1. 1.Department of Agricultural and Forestry Engineering, ETSIIAAUniversity of ValladolidPalenciaSpain
  2. 2.Department of Analytical Chemistry, ETSIIAAUniversity of ValladolidPalenciaSpain

Personalised recommendations