Food and Bioprocess Technology

, Volume 3, Issue 5, pp 707–715 | Cite as

Maize-Based Gluten-Free Bread: Influence of Processing Parameters on Sensory and Instrumental Quality

  • Carla Brites
  • Maria João Trigo
  • Carla Santos
  • Concha Collar
  • Cristina M. Rosell
Original Paper


The performance of maize bread with spongy texture is still a technological challenge due to the absence of a natural network required for holding the carbon dioxide released during the fermentation process. The objective of this research was to investigate the influence of different maize varieties (regional and hybrid), milling process (electric and water mill), formulation and processing variables on the sensory and instrumental (specific volume, texture and colour) quality attributes of corn bread. For that purpose, the traditional breadmaking process applied to the development of the ethnic Portuguese bread (broa) obtained from composite maize–rye–wheat flour was modified to produce gluten-free broa. Significant differences (P < 0.05) between regional and hybrid maize were detected in terms of protein, amylose, and maximum, minimum and final viscosities as evaluated by Rapid Visco Analyser. Concerning the effect of milling process, the grinding in a water mill occurs at slower rate than it does in the electrical mill, in consequence the flour from water milling had lower ash content and higher maximum, minimum and final viscosities than the one obtained from electrical milling. An important point in the breadmaking process was the flour blanching that resulted in doughs with higher consistency, adhesiveness, springiness and stickiness as measured by texture analyser, due to the partial gelatinisation of the corn starch. Baking assays demonstrated sensory preference for regional in detriment of hybrid maize varieties for traditional broa production. Breadmaking technology could be satisfactorily applied to produce gluten-free broa.


Maize flours Blanching Rheology Broa Maize bread Gluten-free bread 



Authors thank the Cerealis Group enterprises (Nacional, Lisboa, Portugal) for supplying ingredients and baking facilities, Armando Ferreira for support on broa crumb texture assessment and colleagues of the department for sensory analysis. Authors thank the financial support of the joint research program between the Spanish/Portugal Scientific Research Council (CSIC, Spain; Grices, Portugal); Comisión Interministerial de Ciencia y Tecnología Project (MCYT, AGL2005-05192-C04-01) and Programa Operacional Ciência e Inovação (PPCDT/AGR/57994/2004).


  1. Almeida-Dominguez, H. D., Suhendro, E. L., & Rooney, L. W. (1997). Factors affecting rapid visco analyser curves for the determination of maize kernel hardness. Journal of Cereal Science, 25, 93–102. doi: 10.1006/jcrs.1996.0072.CrossRefGoogle Scholar
  2. American Association of Cereal Chemists. Approved methods AACC 10th Ed. (2000), method 33–50A (1999) Sensory Evaluation – Triangle difference test, 9pp.Google Scholar
  3. American Institute of Baking Standard Procedure. (2007). White pan bread firmness measurement, Manhattan, Kansas, USA. Available at Accessed 7 April 2007.
  4. Armero, E., & Collar, C. (1997). Texture properties of formulated wheat doughs. Relationships with dough and bread technological quality. European Food Research and Technology, 204, 136–145.Google Scholar
  5. Brites, C. (2006). Melhoria da qualidade do pão de milho no contexto de alimento funcional. In R. Rezzónico (Ed.), Proceedings Congreso Internacional de Ciencia y Tecnología de los Alimentos (p. 33). Córdoba, Argentina: Agencia Córdoba Ciencia.Google Scholar
  6. Brites, C., Haros, M., Trigo, M. J., & Islas, R. P. (2007a). Maíz. In A. E. León, & C. M. Rosell (Eds.), De tales harinas, tales panes. Granos, harinas y productos de panificación en Iberoamérica (pp. 74–121). Córdoba, Argentina: Hugo Báez.Google Scholar
  7. Brites, C., Trigo, M. J., Santos, C., Collar, C., & Rosell, C. M. (2007b). Factores que influenciam as propriedades reológicas de farinhas de milho. In S. F. Palma, J. Canada, J. Dias, S. P. Ferro, & N. B. Alvarenga (Eds.), Proceedings 8° Encontro de Química dos Alimentos (pp. 609–612). Beja, Portugal: GTO 2000, Soc. Artes Gráficas, Lda.Google Scholar
  8. Collar, C., & Bollaín, C. (2005). Relationships between dough functional indicators along breadmaking steps in formulated samples. European Food Research and Technology, 220, 372–379. doi: 10.1007/s00217-004-1039-6.CrossRefGoogle Scholar
  9. Collar, C., Bollaín, C., & Rosell, C. M. (2007). Rheological behaviour of formulated bread doughs during mixing and heating. Food Science and Technology International, 13(2), 99–107. doi: 10.1177/1082013207078341.CrossRefGoogle Scholar
  10. Esteller, M. S., & Lannes, S. C. S. (2005). Parâmetros complementares para fixação de identidade e qualidade de produtos panificados. Cienc Tecnologia Alimentos, 25(4), 802–806.Google Scholar
  11. Gallagher, E., Gormley, T. R., & Arendt, E. K. (2004). Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Science and Technology, 15, 143–152. doi: 10.1016/j.tifs.2003.09.012.CrossRefGoogle Scholar
  12. Gujral, H. S., & Rosell, C. M. (2004a). Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Research International, 37(1), 75–81. doi: 10.1016/j.foodres.2003.08.001.CrossRefGoogle Scholar
  13. Gujral, H. S., & Rosell, C. M. (2004b). Functionality of rice flour modified with a microbial transglutaminase. Journal of Cereal Science, 39, 225–230. doi: 10.1016/j.jcs.2003.10.004.CrossRefGoogle Scholar
  14. Hoover, R., & Manuel, H. (1996). The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. Journal of Cereal Science, 23, 153–162. doi: 10.1006/jcrs.1996.0015.CrossRefGoogle Scholar
  15. International Association for Cereal Science and Technology. ICC Standard Methods. Standard 104/1:1990, Determination of Ash in Cereals and Cereal Products; Standard 105/2: 1994, Determination of Crude Protein in Cereals and Cereal Products for Food and Feed.Google Scholar
  16. International Organization for Standardization. ISO. Approved Methods of ISO. Method 5530–1:1997 Wheat flour, Physical characteristics of doughs, Part 1: Determination of water absorption and rheological properties using a farinograph. ISO/ 6647–1:2007. Rice, Determination of amylose content, Part 1: Reference method ISO/ 6647–2:2007. Rice, Determination of amylose content, Part 2: Routine methods. ISO 8587:1988 Sensory analysis, Methodology, Ranking; ISO 5495:1983 Sensory analysis, Methodology, Paired comparison test. The Association: Geneva, Switzerland.Google Scholar
  17. Lino, C. M., Silva, L. J. G., Pena, A., Fernández, M., & Mañes, J. (2007). Occurrence of fumonisins B1 and B2 in broa, typical Portuguese maize bread. International Journal of Food Microbiology, 118, 79–82. doi: 10.1016/j.ijfoodmicro.2007.04.014.CrossRefGoogle Scholar
  18. Lopez, A. C. B., Pereira, A. J. G., & Junqueira, R. G. (2004). Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread. Brazilian Archives of Biology and Technology, 47, 63–70. doi: 10.1590/S1516-89132004000100009.CrossRefGoogle Scholar
  19. Marco, C., Brites, C., Collar, C., & Rosell, C. M. (2007). Influence of hydrocolloids on rheological parameters of gluten free corn bread. In ICC (Ed.), Proceedings of 1st Latin American Conference ICC (p. 217). Rosario, Argentina: ICC.Google Scholar
  20. Marco, C., & Rosell, C. M. (2008a). Breadmaking performance of protein enriched gluten free breads. European Food Research International. doi: 10.1007/s00217-008-0838-6
  21. Marco, C., & Rosell, C. M. (2008b). Modification of rice proteins functionality by crosslinking with different protein isolates. Journal of Food Engineering, 84, 132–139. doi: 10.1016/j.jfoodeng.2007.05.003.CrossRefGoogle Scholar
  22. Marco, C., & Rosell, C. M. (2008c). Functional and rheological properties of protein enriched gluten free composite flours. Journal of Food Engineering, 88, 94–103. doi: 10.1016/j.jfoodeng.2008.01.018.CrossRefGoogle Scholar
  23. Martínez, F., & el-Dahs, A. A. (1993). Effect of addition of instant corn flour on rheological characteristics of wheat flour and breadmaking III. Archivos Latinoamericanos de Nutrición, 43(4), 321–326.Google Scholar
  24. Miyazaki, M., & Morita, N. (2005). Effect of heat-moisture treated maize starch on the properties of dough and bread. Food Research International, 38, 369–376. doi: 10.1016/j.foodres.2004.10.015.CrossRefGoogle Scholar
  25. Moore, M. M., Heinbockel, M., Dockery, P., Ulmer, H. M., & Arendt, E. K. (2006). Network formation in gluten-free bread with application of transglutaminase. Cereal Chemistry, 83(1), 28–36. doi: 10.1094/CC-83-0028.CrossRefGoogle Scholar
  26. Moreira, P. M. (2006). Participatory maize breeding in Portugal. A Case Study. Acta Agronomica Hungarica, 54(4), 431–439. doi: 10.1556/AAgr.54.2006.4.6.CrossRefGoogle Scholar
  27. Özboy, Ö. (2002). Development of corn starch-gum bread for phenylketonuria patients. Die Nahrung, 46(2), 87–91.CrossRefGoogle Scholar
  28. Rosell, C. M., & Collar, C. (2007). Rice based products. In Y. H. Hui (Ed.), Handbook of food products manufacturing (pp. 523–538). Hoboken, New Jersey, USA: Willey-Intersciences.Google Scholar
  29. Rosell, C. M., & Marco, C. (2007). Different strategies for optimizing rice based bread: ingredients, structuring agents and breadmaking process. In J. F. Panozzo, & C. K. Black (Eds.), Proceedings of 57th Australian Cereal Chemistry Conference (pp. 155–158). Victoria, Australia: Impact Printing.Google Scholar
  30. Rosell, C. M., & Marco, C. (2008). Rice. In E. A. Arendt, & F. Dal Bello (Eds.), Gluten free cereal products and beverages (pp. 81–100). Oxford, UK: Elsevier.CrossRefGoogle Scholar
  31. Sanchez, H. D., Osella, C. A., & de la Torre, M. A. (2002). Optimization of gluten-free bread prepared from cornstarch, rice flour, and cassava starch. Journal of Food Science, 67(1), 416–419.CrossRefGoogle Scholar
  32. Sandhu, K. S., Singh, N., & Malhi, N. S. (2007). Some properties of corn grains and their flours I: Physicochemical, functional and chapatti-making properties of flours. Food Chemistry, 101, 938–946.CrossRefGoogle Scholar
  33. Sanni, A. I., Onilude, A. A., & Fatungase, M. O. (1998). Production of sour maize bread using starter-cultures. World Journal of Microbiology & Biotechnology, 14, 101–106.Google Scholar
  34. Santos, C. A. L. (2006). Relatório de actividades de bolsa de investigação. Oeiras, Portugal: Estação Agronómica Nacional.Google Scholar
  35. SAS. (1999). SAS/STAT® User’s guide-release (8th ed.). Cary, North Carolina, USA: SAS Institute Inc.Google Scholar
  36. Schober, T. J., Bean, S. R., & Boyle, D. L. (2007). Gluten-free sorghum bread improved by sourdough fermentation: Biochemical, rheological, and microstructural background. Journal of Agricultural and Food Chemistry, 55(13), 5137–5146.CrossRefGoogle Scholar
  37. Vaz Patto, M. C., Moreira, P. M., Carvalho, V., & Pego, S. (2007). Collecting maize (Zea mays L. convar. mays) with potential technological ability for bread making in Portugal. Genetic Resources and Crop Evolution, 54(7), 1555–1563.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Carla Brites
    • 1
  • Maria João Trigo
    • 1
  • Carla Santos
    • 1
  • Concha Collar
    • 2
  • Cristina M. Rosell
    • 2
  1. 1.Instituto Nacional dos Recursos Biológicos, I.P., L-INIA, Unidade Tecnologia Alimentar, Quinta do MarquêsOeirasPortugal
  2. 2.Institute of Agrochemistry and Food Technology (IATA-CSIC)BurjasotSpain

Personalised recommendations