Advertisement

Food and Bioprocess Technology

, Volume 3, Issue 4, pp 577–585 | Cite as

Influence of Gluten-free Flours and their Mixtures on Batter Properties and Bread Quality

  • Lorena S. Sciarini
  • Pablo D. Ribotta
  • Alberto E. León
  • Gabriela T. Pérez
Original Paper

Abstract

Gluten is a major component of some cereals and is responsible for flour technological characteristics to make bakery products. However, gluten must be eliminated from the diet of celiac patients because its ingestion causes serious intestinal damage. The objectives of this study were to assess the effect of different flours and their mixtures on thermal and pasting properties of batters, and to study the quality parameters and staling rate of gluten-free breads. Starch gelatinization temperatures and enthalpies depended on batter composition. Soy flour addition had a higher effect on rice than on corn starch, indicating some differential interaction between starch and proteins. Inactive soy flour incorporation improved all bread quality parameters in both corn- and rice-based breads. Higher batter firmness of formulations with soy addition (extrusion force was doubled in rice/soy and rice/corn/soy batters with regard to rice and rice/corn batters) partially explained higher specific volume (rice breads: 1.98 cm3/g; rice/soy 90:10 2.51 cm3/g, corn/soy 90:10: 2.05 cm3/g, whereas corn/soy 80:20: 2.12 cm3/g), as these batters retained more air during proofing. The staling rate was decreased by soy flour incorporation on rice (staling rate of rice breads with 10% soy diminished 52%, and with 20% of soy addition, 77%, both regarding to 100% rice breads) and corn formulation (the staling rate of corn/soy 80:20 breads was 5.9% lower than corn/soy 90:10) because of the high water-holding capacity of soy proteins and the interactions established with amylopectin that could retard the retrogradation process. Breads made with rice, corn, and soy flours showed the best quality attributes: high volume, good crumb appearance, soft texture, and low staling rate.

Keywords

Gluten-free bread Celiac disease Soybean Corn Rice 

Notes

Acknowledgments

The authors would like to thank the Laboratorio de Idiomas (FCA-UNC) for providing useful suggestions to improve the English language in this paper, and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for financial support.

References

  1. AACC International (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). Methods 72-10, 74-09. The Association: St. Paul, MN.Google Scholar
  2. Belitz, H. D., & Grosch, W. (1987). Food chemistry. Berlin: Springer.Google Scholar
  3. Chirdo, F. G., Zwirner, N. W., Rumbo, M., & Fossati, C. A. (2002). In vitro presentation of gliadin-derived peptides by different cell lines. Clinica Chiimica Acta, 317(1–2), 151–158.CrossRefGoogle Scholar
  4. Chungcharoen, A., & Lund, B. D. (1987). Influence of solutes and water on rice starch gelatinization. Cereal Chemistry, 64(4), 240–243.Google Scholar
  5. Collin, P., Reunala, T., Rasmussen, M., Kyrönpalo, S., Pehkonen, E., Laippala, P., et al. (1997). High incidence and prevalence of adult coeliac disease. Scandinavian Journal of Gastroenterology, 32(11), 1129–1133.CrossRefGoogle Scholar
  6. aEvans, I. D., & Haisman, D. R. (1982). The effects of solutes on the gelatinization temperature of potato starch. Starch, 34(7), 224–231.CrossRefGoogle Scholar
  7. Feighery, C. (1999). Celiac disease. British Medical Journal, 319(7204), 236–239.Google Scholar
  8. Gallagher, E., Gormley, T. R., & Arendt, E. K. (2003). Crust and crumb characteristics of gluten free breads. Journal of Food Engineering, 56(2–3), 153–161.CrossRefGoogle Scholar
  9. Goel, P. K., Singhal, R. S., & Kulkarni, P. R. (1999). Studies on interactions of corn starch with casein and casein hydrolysates. Food Chemistry, 64(3), 383–389.CrossRefGoogle Scholar
  10. Gujral, H. S., & Rosell, C. M. (2004). Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Research International, 37(1), 75–81.CrossRefGoogle Scholar
  11. Infostat software (2004). Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba Argentina.Google Scholar
  12. Iturriaga, L., Lopez, B., & Añón, C. (2004). Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Research International, 37(5), 439–447.CrossRefGoogle Scholar
  13. Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., et al. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76(5), 629–637.CrossRefGoogle Scholar
  14. Jenkins, P. J., & Donald, A. M. (1998). Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydrate Research, 308(1–2), 133–147.CrossRefGoogle Scholar
  15. Kent, N. L., & Evers, A. D. (1994). Bread made with gluten substitutes. Technology of cereals (p. 215). Oxford: Pergamon Press.Google Scholar
  16. Kiskini, A. (2007). Optimization of amaranth based gluten free bread formula. In Book of Abstracts of the First International Symposium on Gluten-Free Cereal Products and Beverages, pp 79, 12–14 September 2007, Cork, Ireland.Google Scholar
  17. Lamsal, B. P., Jung, S., & Johnson, L. A. (2007). Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. LWT, 40(7), 1215–1223.CrossRefGoogle Scholar
  18. Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., & Biliaderis, C. G. (2007). Effect of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3), 1033–1047.CrossRefGoogle Scholar
  19. Li, J. Y., & Yeh, A. I. (2001). Relationship between thermal, rheological characteristics and swelling power of various starches. Journal of Food Engineering, 50(3), 141–148.CrossRefGoogle Scholar
  20. Li, J. Y., Yeh, A. I., & Fan, K. L. (2007). Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. Journal of Food Engineering, 78(4), 1240–1247.CrossRefGoogle Scholar
  21. Maaurf, A. G., Che Man, Y. B., Asbi, B. A., Junainah, A. H., & Kennedy, J. F. (2001). Gelatinisation of sago starch in the presence of sucrose and sodium chloride as assessed by differential scanning calorimetry. Carbohydrate Polymers, 45(4), 335–345.CrossRefGoogle Scholar
  22. Marco, C., & Rosell, C. M. (2008). Breadmaking performance of protein enriched, gluten-free breads. European Food Research Technology. DOI  10.1007/s00217-008-0838-6.
  23. Moore, M. M., Heinbockel, M., Dockery, P., Ulmer, H. E., & Arendt, E. K. (2006). Network formation in gluten-free bread with application of transglutaminase. Cereal Chemistry, 83(1), 28–36.CrossRefGoogle Scholar
  24. Moore, M. M., Schober, T. J., Dockery, P., & Arendt, E. K. (2004). Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chemistry, 81(5), 567–575.CrossRefGoogle Scholar
  25. Mustalahti, K., Lohiniemi, S., Collin, P., Vuolteenaho, N., Laippala, P., & Markku, M. (2002). Gluten-free diet and quality of life in patients with screen-detected celiac disease. Effective Clinical Practice, 5(3), 105–113.Google Scholar
  26. Ohm, J. B., & Chung, O. K. (1999). Gluten, pasting, and mixograph parameters of hard winter wheat flours in relation to breadmaking. Cereal Chemistry, 76(5), 606–613.CrossRefGoogle Scholar
  27. Ribotta, P. D., Ausar, S., Morcillo, M., Pérez, G. T., Beltramo, D. M., & León, A. E. (2004). Production of gluten free bread using soybean flour. Journal of the Science of Food Agriculture, 84(14), 1969–1974.CrossRefGoogle Scholar
  28. Ryan, K. J., & Brewer, M. S. (2005). Purification and identification of interacting components in a wheat starch–soy protein system. Food Chemistry, 89(1), 109–124.CrossRefGoogle Scholar
  29. Ryan, K. L., Homco-Ryan, C. L., Jenson, J., Robbins, K. L., Prestat, C., & Brewer M. S. (2002). Llipid extraction process on texturized soy flour and wheat gluten protein-protein interactions in a dough matrix. Cereal Chemistry, 79(3), 434–438.CrossRefGoogle Scholar
  30. Sahlstrøm, S., Bævre, A. B., & Bråthen, E. (2003). Impact of starch properties on hearth bread characteristics. I. Starch in wheat flour. Journal of Cereal Science, 37(3), 275–284.CrossRefGoogle Scholar
  31. Sanchez, H. D., Osella, C. A., & de la Torre, M. A. (2002). Optimization of gluten-free bread prepared from corn starch, rice flour and cassava starch. Journal of Food Science, 67(1), 416–419.CrossRefGoogle Scholar
  32. Sanchez, H. D., Osella, C. A., & de la Torre, M. A. (2004). Use of response surface methodology to optimize gluten-free bread fortified with soy flour and drink milk. Food Science and Technology International, 10(1), 5–9.CrossRefGoogle Scholar
  33. Sandhu, K. S., Singh, N., & Malhi, N. S. (2007). Some properties of corn grain and their flours: physicochemical, functional and chapatti-making properties of flour. Food Chemistry, 101(3), 938–946.CrossRefGoogle Scholar
  34. Schober, T. J., Messerschmidt, M., Bean, S. R., Park, S. H., & Arendt, E. K. (2005). Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chemistry, 82(4), 394–404.CrossRefGoogle Scholar
  35. Singh, N., Singh, J., Kaur, K., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231.CrossRefGoogle Scholar
  36. Takahashi, K., & Wada, K. (1992). Reversibility of salt effects on thermal stability of potato starch granules. Journal of Food Science, 57(5), 1140–1143.CrossRefGoogle Scholar
  37. Tan, Y., & Corke, H. (2002). Factor analysis of physicochemical properties of 63 rice varieties. Journal of the Science of Food and Agriculture, 82(7), 745–752.CrossRefGoogle Scholar
  38. Texture Expert (1999). Texture Expert Help (Version 1.22). London, UK: Stable Micro System Ltd.Google Scholar
  39. Thompson, T. (2001). Wheat starch, gliadin and the gluten free diet. Journal of the American Dietetic Association, 101(12), 1456–1459.CrossRefGoogle Scholar
  40. Willhoft, E. M. (1971). Bread staling. I. Experimental study. Journal of the Science of Food and Agriculture, 22(4), 176–180.CrossRefGoogle Scholar
  41. Xue, J., & Ngadi, M. (2007). Thermal properties of batter systems formulated by combinations of different flours. LWT, 40(8), 1459–1465.CrossRefGoogle Scholar
  42. Yang, H., Irudayaraj, J., Otgonchimeg, S., & Walsh, M. (2004). Rheological study of starch and dairy ingredient-based food systems. Food Chemistry, 86(4), 571–578.CrossRefGoogle Scholar
  43. Yang, H., & Park, J. W. (1998). Effects of starch properties and thermal-processing conditions on surimi-starch gels. LWT, 31(4), 344–353.Google Scholar
  44. Zeleznak, K. J., & Hoseney, R. C. (1987). The glass transition in starch. Cereal Chemistry, 64(2), 121–124.Google Scholar
  45. Zhang, G., & Hamaker, B. R. (2003). A three component interaction among starch, protein, and free fatty acids revealed by pasting profiles. Journal of Agriculture and Food Chemistry, 51(9), 2797–2800.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Lorena S. Sciarini
    • 1
  • Pablo D. Ribotta
    • 1
  • Alberto E. León
    • 1
  • Gabriela T. Pérez
    • 1
  1. 1.CONICET - Facultad de Ciencias AgropecuariasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations