Advertisement

Food and Bioprocess Technology

, Volume 1, Issue 3, pp 297–300 | Cite as

A New Process for Extracting Alginates from Laminaria digitata: Reactive Extrusion

  • Peggy VauchelEmail author
  • Raymond Kaas
  • Abdellah Arhaliass
  • Régis Baron
  • Jack Legrand
Communication

Abstract

Alginates are natural polysaccharides that are extracted from brown seaweeds and widely used for their rheological properties. The main step in the extraction protocol used in the alginate industry is that of alkaline extraction. A batch process is used for this step, which is time-, water-, and reactant-consuming. The possibility of extracting by reactive extrusion was investigated. The reactive extrusion process appeared to be more efficient than the batch process for the alkaline extraction of alginates from Laminaria digitata in several key ways: Time demand is reduced from about an hour to only few minutes, water and reactant requirements are divided by more than a factor 2, extraction yield is 15% higher (relative enhancement), and the rheological properties of the product were all enhanced. Hence, reactive extrusion could be an interesting alternative process for the alginate industry to produce high rheological properties alginates.

Keywords

Alginate Alkaline extraction Laminaria digitata Reactive extrusion Intrinsic viscosity 

References

  1. Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54, 484–489.CrossRefGoogle Scholar
  2. Kennedy, J. F., & Bradshaw, I. J. (1984). A rapid method for the assay of alginates in solution using polyhexamethylenebiguanidium chloride. British Polymer Journal, 16, 95–101.CrossRefGoogle Scholar
  3. Kloareg, B., & Quatrano, R. S. (1988). Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanography and Marine Biology: An Annual Review, 26, 259–315.Google Scholar
  4. Mancini, M., Moresi, M., & Sappino, F. (1996). Rheological behaviour of aqueous dispersions of algal sodium alginates. Journal of Food Engineering, 28, 283–295.CrossRefGoogle Scholar
  5. Moen, E., Larsen, B., & Ostgaard, K. (1997). Aerobic microbial degradation of alginate in Laminaria hyperborea stipes containing different levels of polyphenols. Journal of Applied Phycology, 9, 45–54.CrossRefGoogle Scholar
  6. Pérez, R. (1970). Teneur en acide alginique et degré de polymérisation de ce produit au cours de la vie de Laminaria digitata (L.) Lamour. Revue des Travaux de l'Institut des Pêches Maritimes, 34, 351–361.Google Scholar
  7. Pérez, R. (1997). Ces algues qui nous entourent. Conception actuelle, rôle dans la biosphère, utilisations, culture. Plouzané, France: IFREMER, 272 pp.Google Scholar
  8. Pérez, R., Kaas, R., Campello, F., Arbault, S., & Barbaroux, O. (1992). La culture des algues marines dans le monde. Plouzané, France: IFREMER, 613 pp.Google Scholar
  9. Smidsrød, O., Haug, A., & Larsen, B. (1963). The influence of reducing compounds on the rate of degradation of alginates. Acta Chemica Scandinavia, 17, 1473–1474.CrossRefGoogle Scholar
  10. Tullia, M., Filisetti-Cozzi, C. C., & Carpita, N. C. (1991). Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 197, 157–162.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Peggy Vauchel
    • 1
    Email author
  • Raymond Kaas
    • 2
  • Abdellah Arhaliass
    • 1
  • Régis Baron
    • 3
  • Jack Legrand
    • 1
  1. 1.GEPEA, CNRSUniversité de Nantes, UMR 6144, CRTTSaint-Nazaire CedexFrance
  2. 2.Laboratoire Physiologie et Biotechnologie des AlguesIFREMERNantes Cedex 03France
  3. 3.Département Sciences et Techniques Alimentaires MarinesIFREMERNantes Cedex 03France

Personalised recommendations