Food and Bioprocess Technology

, Volume 3, Issue 3, pp 373–378

Optimization of Fermentation Parameters for Higher Lovastatin Production in Red Mold Rice through Co-culture of Monascus purpureus and Monascus ruber

Original Paper

Abstract

Monascus, fermented rice (red mold rice), has been found to reduce the serum total cholesterol and triglyceride due to presence of lovastatin. Lovastatin acts as an inhibitor of 3-hydroxy-3-methyl glutaryl coenzyme A reductase. Coculture of Monascus purpureus MTCC 369 and Monascus ruber MTCC 1880 was used to produce red mold rice by solid-state fermentation. Optimization of different fermentation process parameters such as temperature, fermentation time, inoculum volume, and pH of the solid medium was carried out by Box–Behnken’s factorial design of response surface methodology to maximize lovastatin concentration in red mold rice. Maximum lovastatin production of 2.83 mg/g was predicted at 14th day in solid medium under optimized process condition.

Keywords

Coculture Monascus purpureus Monascus ruber Lovastatin Response surface methodology Solid-state fermentation 

References

  1. Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., et al. (1980). Mevinolin: A highly potent competitive inhibitor of hydroxymethyl glutaryl coenzyme A reductase and cholesterol lowering agent. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 3957–3961.CrossRefGoogle Scholar
  2. Banerjee, R., Mukherjee, G., & Patra, K. C. (2005). Microbial transformation of tannin-rich substrate to gallic acid through co culture method. Bioresource Technology, 96(8), 949–953.CrossRefGoogle Scholar
  3. Chang, Y. N., Huang, J. C., Lee, C. C., Shih, I. L., & Tzeng, Y. M. (2002). Use of response surface methodology to optimize production of lovastatin by Monascus ruber. Enzyme and Microbial Technology, 30(7), 889–894.CrossRefGoogle Scholar
  4. Chen, F., & Hu, X. (2005). Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. International Journal of Food Microbiology, 103(3), 331–337.CrossRefGoogle Scholar
  5. Chiu, C. H., Ni, K. H., Guu, Y. K., & Pan, T. M. (2006). production of red mold rice using a modified Nagata type Koji marker. Applied Microbiology and Biotechnology, 73(2), 297–304.CrossRefGoogle Scholar
  6. Demain, A. L. (1999). Pharmaceutically active secondary metabolites of microorganisms. Applied Microbiology and Biotechnology, 52(4), 455–463.CrossRefGoogle Scholar
  7. Hajjaj, H., Niedberger, P., & Duboc, P. (2001). Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Applied and Environmental Microbiology, 67(6), 2596–2604.CrossRefGoogle Scholar
  8. Kohama, Y., Matsumoto, S., Mimura, T., Tanabe, N., Inada, A., & Nakanishi, T. (1987). Isolation and identification of hypotensive principles in red-mold rice. Chemical and Pharmaceutical Bulletin, 35(6), 2484–2489.Google Scholar
  9. Lee, C. L., Tsai, T. Y., Wang, J. J., & Pan, T. M. (2006a). In vivo hypolipidemic effects and safety of low dosage Monascus powder in hamster model of hyperlipidemia. Applied Microbiology and Biotechnology, 70(5), 533–540.CrossRefGoogle Scholar
  10. Lee, C. L., Wang, J. J., Kuo, S. L., & Pan, T. M. (2006b). Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agents—monacolin K and antiinflammation agent—monascin. Applied Microbiology and Biotechnology, 72(6), 1254–1262.CrossRefGoogle Scholar
  11. Manzoni, M., & Rollini, M. (2002). Biosynthesis and biotechnological production of statins by filamentous fungi and applications of these cholesterol-lowering drugs. Applied Microbiology and Biotechnology, 58(5), 555–564.CrossRefGoogle Scholar
  12. Miyake, T., Mori, A., Kii, T., Okuno, T., Usui, Y., Fumihiro, S., et al. (2005). light effects on cell development and secondary metabolism in Monascus. Journal of Industrial Microbiology and Biotechnology, 32(3), 103–108.CrossRefGoogle Scholar
  13. Miyake, T., Uchitomo, K., Zhang, M. Y., Kono, I., Nozaki, N., Sammoto, H., et al. (2006). Effects of the principle nutrients on lovastatin production by Monascus pilosus. Bioscience Biotechnology Biochemistry, 70(5), 1154–1159.CrossRefGoogle Scholar
  14. Pandey, A., Selvakumar, P., Socool, C. R., & Nigam, P. (1999). Solid-state fermentation for production of industrial enzymes. Current Science, 77(1), 149–162.Google Scholar
  15. Porcel, E. M. R., Lopez, J. L. C., Perez, J. A. S., & Chisti, Y. (2007). Enhanced production of lovastatin in a bubble column by Aspergillus terreus using a two-stage feeding strategy. Journal of Chemical Technology and Biotechnology, 82(1), 58–64.CrossRefGoogle Scholar
  16. Samiee, S. M., Moazami, N., Haghighi, S., Mohseni, F. A., Mirdamadi, S., & Bakhtiari, M. R. (2003). Screening of lovastatin production by filamentous fungi. Iranian Biomedical Journal, 7(1), 29–33.Google Scholar
  17. Sayyad, S. A., Panda, B. P., Javed, S., & Ali, M. (2007). Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Applied Microbiology and Biotechnology, 73(5), 1054–1058.CrossRefGoogle Scholar
  18. Su, N. W., Lin, Y. L., Lee, M. H., & Ho, C. Y. (2005). Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effects and induces cell death on HepG2 cells. Journal of Agriculture and Food Chemistry, 53(6), 1949–1954.CrossRefGoogle Scholar
  19. Su, Y. C., Wang, J. J., Lin, T. T., & Pan, T. M. (2003). Production of secondary metabolites, γ-amino butyric acid and monacolin K by Monascus. Journal of Industrial Microbiology and Biotechnology, 30(1), 41–46.Google Scholar
  20. Taira, J., Miyagi, C., & Aniya, Y. (2002). Dimerumic acid as an antioxidant from the mold, Monascus anka: The inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochemical Pharmacology, 63(5), 1019–1026.CrossRefGoogle Scholar
  21. Temudo, M. F., Kleerebezem, R., & Loosdrecht, M. (2007). Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. Biotechnology and Bioengineering, 98(1), 69–79.CrossRefGoogle Scholar
  22. Tobert, J. A. (2003). Lovastatin and beyond: The history of the HMG-CoA reductase inhibitors. Nature Review Drug Discovery, 2(7), 517–526.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Bibhu Prasad Panda
    • 1
  • Saleem Javed
    • 2
  • Mohammad Ali
    • 1
  1. 1.Pharmaceutical Biotechnology Laboratory, Faculty of PharmacyJamia Hamdard (Hamdard University)New DelhiIndia
  2. 2.Molecular Biology and Biotechnology Laboratory, Faculty of ScienceJamia Hamdard (Hamdard University)New DelhiIndia

Personalised recommendations