Advertisement

Quo Vadis—Do Immunotherapies Have a Role in Glioblastoma?

  • Sylvia C. Kurz
  • Patrick Y. Wen
Neuro-oncology (R Soffietti, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-oncology

Abstract

Purpose of review

More effective therapies for glioblastoma are urgently needed. Immunotherapeutic strategies appear particularly promising and are therefore intensively studied. This article reviews the current understanding of the immunosuppressive glioblastoma microenvironment, discusses the rationale behind various immunotherapies, and outlines the findings of several recently published clinical studies.

Recent findings

The results of CheckMate-143 indicated that nivolumab is not superior to bevacizumab in patients with recurrent glioblastoma. A first-in man exploratory study evaluating EGFRvIII-specific CAR T cells for patients with newly diagnosed glioblastoma demonstrated overall safety of CAR T cell therapy and effective target recognition. A pilot study evaluating treatment with adoptively transferred CMV-specific T cells combined with a CMV-specific DC vaccine was found to be safe and resulted in increased polyclonality of CMV-specific T cells in vivo.

Summary

Despite the success of immunotherapies in many cancers, clinical evidence supporting their efficacy for patients with glioblastoma is still lacking. Nevertheless, the recently published studies provide important proof-of-concept in several areas of immunotherapy research. The careful and critical interpretation of these results will enhance our understanding of the opportunities and challenges of immunotherapies for high-grade gliomas and improve the immunotherapeutic strategies investigated in future clinical trials.

Keywords

Glioblastoma Tumor microenvironment Immunotherapy Checkpoint inhibition PD-1/PD-L1 pathway Anti-glioma vaccine CAR T cells 

Notes

Compliance with Ethical Standards

Conflict of Interest

Sylvia C. Kurz declares that she has no conflict of interest. Patrick Y. Wen receives research support from Agios, Angiochem, Astra Zeneca, Exelixis, Genentech/Roche, GlaxoSmith Kline, Karyopharm, Novartis, Sanofi-Aventis, Regeneron Pharmaceutical Inc., and Vascular Biogenics; he is on the advisory board for Abbvie, Cavion, Celldex, Genentech/Roche, Midatech, Momenta, Novartis, Novocure, SigmaTau, and Vascular Biogenics and is part of the Speaker’s Bureau for Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology. 2017;19(suppl_5):v1–v88.  https://doi.org/10.1093/neuonc/nox158.PubMedCrossRefGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.  https://doi.org/10.1056/NEJMoa043330.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, et al. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res. 2005;11(23):8304–11.  https://doi.org/10.1158/1078-0432.CCR-04-2588.PubMedCrossRefGoogle Scholar
  4. 4.
    Mehling M, Simon P, Mittelbronn M, Meyermann R, Ferrone S, Weller M, et al. WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism? Acta Neuropathol. 2007;114(2):111–9.  https://doi.org/10.1007/s00401-007-0231-8.PubMedCrossRefGoogle Scholar
  5. 5.
    Wastowski IJ, Simoes RT, Yaghi L, Donadi EA, Pancoto JT, Poras I, et al. Human leukocyte antigen-G is frequently expressed in glioblastoma and may be induced in vitro by combined 5-aza-2′-deoxycytidine and interferon-gamma treatments: results from a multicentric study. Am J Pathol. 2013;182(2):540–52.  https://doi.org/10.1016/j.ajpath.2012.10.021.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wolpert F, Roth P, Lamszus K, Tabatabai G, Weller M, Eisele G. HLA-E contributes to an immune-inhibitory phenotype of glioblastoma stem-like cells. J Neuroimmunol. 2012;250(1–2):27–34.  https://doi.org/10.1016/j.jneuroim.2012.05.010.PubMedCrossRefGoogle Scholar
  7. 7.
    Wischhusen J, Friese MA, Mittelbronn M, Meyermann R, Weller M. HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. J Neuropathol Exp Neurol. 2005;64(6):523–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Roth P, Mittelbronn M, Wick W, Meyermann R, Tatagiba M, Weller M. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res. 2007;67(8):3540–4.  https://doi.org/10.1158/0008-5472.CAN-06-4783.PubMedCrossRefGoogle Scholar
  9. 9.
    Weller M, Weinstock C, Will C, Wagenknecht B, Dichgans J, Lang F, et al. CD95-dependent T-cell killing by glioma cells expressing CD95 ligand: more on tumor immune escape, the CD95 counterattack, and the immune privilege of the brain. Cell Physiol Biochem. 1997;7(5):282–8.CrossRefGoogle Scholar
  10. 10.
    Kinjyo I, Inoue H, Hamano S, Fukuyama S, Yoshimura T, Koga K, et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-beta 1. J Exp Med. 2006;203(4):1021–31.  https://doi.org/10.1084/jem.20052333.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 2010;9(1):67–78.  https://doi.org/10.1158/1535-7163.MCT-09-0734.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206(7):1457–64.  https://doi.org/10.1084/jem.20090207.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Torres-Aguilar H, Aguilar-Ruiz SR, Gonzalez-Perez G, Munguia R, Bajana S, Meraz-Rios MA, et al. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J Immunol. 2010;184(4):1765–75.  https://doi.org/10.4049/jimmunol.0902133.PubMedCrossRefGoogle Scholar
  14. 14.
    • Ferguson SD, Srinivasan VM, Heimberger AB. The role of STAT3 in tumor-mediated immune suppression. J Neuro-Oncology. 2015;123(3):385–94.  https://doi.org/10.1007/s11060-015-1731-3. Excellent review article that reviews the role of STAT3 and the mannifold implications in the glioblastoma microenvironment. CrossRefGoogle Scholar
  15. 15.
    Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108(5):1571–9.  https://doi.org/10.1182/blood-2006-02-004747.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia. 2009;57(13):1458–67.  https://doi.org/10.1002/glia.20863.PubMedCrossRefGoogle Scholar
  17. 17.
    Fujiwara Y, Komohara Y, Kudo R, Tsurushima K, Ohnishi K, Ikeda T, et al. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol Rep. 2011;26(6):1533–7.  https://doi.org/10.3892/or.2011.1454.PubMedCrossRefGoogle Scholar
  18. 18.
    Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I, et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res. 2007;67(20):9630–6.  https://doi.org/10.1158/0008-5472.CAN-07-1243.PubMedCrossRefGoogle Scholar
  19. 19.
    Kohsaka S, Wang L, Yachi K, Mahabir R, Narita T, Itoh T, et al. STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol Cancer Ther. 2012;11(6):1289–99.  https://doi.org/10.1158/1535-7163.MCT-11-0801.PubMedCrossRefGoogle Scholar
  20. 20.
    de Groot J, Liang J, Kong LY, Wei J, Piao Y, Fuller G, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget. 2012;3(9):1036–48.  https://doi.org/10.18632/oncotarget.663.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pickup M, Novitskiy S, Moses HL. The roles of TGFbeta in the tumor microenvironment. Nat Rev Cancer. 2013;13(11):788–99.  https://doi.org/10.1038/nrc3603.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol. 1992;148(5):1404–10.PubMedGoogle Scholar
  23. 23.
    Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G, et al. Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res. 2009;15(21):6551–9.  https://doi.org/10.1158/1078-0432.CCR-09-1067.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 2004;64(21):7954–61.  https://doi.org/10.1158/0008-5472.CAN-04-1013.PubMedCrossRefGoogle Scholar
  25. 25.
    Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, et al. A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncol. 2016;18(8):1146–56.  https://doi.org/10.1093/neuonc/now009.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol. 1995;146(2):317–22.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang L, Shi J, van Ginkel FW, Lan L, Niemeyer G, Martin DR, et al. Neural stem/progenitor cells modulate immune responses by suppressing T lymphocytes with nitric oxide and prostaglandin E2. Exp Neurol. 2009;216(1):177–83.  https://doi.org/10.1016/j.expneurol.2008.11.017.PubMedCrossRefGoogle Scholar
  28. 28.
    Desbaillets I, Tada M, de Tribolet N, Diserens AC, Hamou MF, Van Meir EG. Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. Int J Cancer J Int du Cancer. 1994;58(2):240–7.CrossRefGoogle Scholar
  29. 29.
    Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunotherapy: CII. 2008;57(1):123–31.  https://doi.org/10.1007/s00262-007-0336-x.CrossRefGoogle Scholar
  30. 30.
    Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 2008;14(16):5166–72.  https://doi.org/10.1158/1078-0432.CCR-08-0320.PubMedCrossRefGoogle Scholar
  31. 31.
    El Andaloussi A, Lesniak MS. CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neuro-Oncol. 2007;83(2):145–52.  https://doi.org/10.1007/s11060-006-9314-y.CrossRefGoogle Scholar
  32. 32.
    Yue Q, Zhang X, Ye HX, Wang Y, Du ZG, Yao Y, et al. The prognostic value of Foxp3+ tumor-infiltrating lymphocytes in patients with glioblastoma. J Neuro-Oncol. 2014;116(2):251–9.  https://doi.org/10.1007/s11060-013-1314-0.CrossRefGoogle Scholar
  33. 33.
    Jacobs JF, Idema AJ, Bol KF, Grotenhuis JA, de Vries IJ, Wesseling P, et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol. 2010;225(1–2):195–9.  https://doi.org/10.1016/j.jneuroim.2010.05.020.PubMedCrossRefGoogle Scholar
  34. 34.
    Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008;13(3):206–20.  https://doi.org/10.1016/j.ccr.2008.01.034.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-Oncology. 2011;13(6):591–9.  https://doi.org/10.1093/neuonc/nor042.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.  https://doi.org/10.1038/nri2506.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172(2):989–99.PubMedCrossRefGoogle Scholar
  38. 38.
    Morantz RA, Wood GW, Foster M, Clark M, Gollahon K. Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg. 1979;50(3):305–11.  https://doi.org/10.3171/jns.1979.50.3.0305.PubMedCrossRefGoogle Scholar
  39. 39.
    Morimura T, Neuchrist C, Kitz K, Budka H, Scheiner O, Kraft D, et al. Monocyte subpopulations in human gliomas: expression of Fc and complement receptors and correlation with tumor proliferation. Acta Neuropathol. 1990;80(3):287–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008;216(1):15–24.  https://doi.org/10.1002/path.2370.PubMedCrossRefGoogle Scholar
  41. 41.
    Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, et al. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion—an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene. 2008;27(7):918–30.  https://doi.org/10.1038/sj.onc.1210683.PubMedCrossRefGoogle Scholar
  42. 42.
    • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.  https://doi.org/10.12703/P6-13. Opinion statement outlining and challenging the current concept of the bipoloar M1/M2 activation states. PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology. 2010;12(11):1113–25.  https://doi.org/10.1093/neuonc/noq082.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med. 2012;18:519–27.  https://doi.org/10.2119/molmed.2011.00217.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91.  https://doi.org/10.1038/nn.4338.PubMedCrossRefGoogle Scholar
  46. 46.
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.  https://doi.org/10.1126/science.1160062.PubMedCrossRefGoogle Scholar
  47. 47.
    Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013;19(12):3165–75.  https://doi.org/10.1158/1078-0432.CCR-12-3314.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, et al. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med. 2014;211(5):943–59.  https://doi.org/10.1084/jem.20130790.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Hofmeyer KA, Jeon H, Zang X. The PD-1/PD-L1 (B7-H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol. 2011;2011:451694.  https://doi.org/10.1155/2011/451694.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–29.  https://doi.org/10.1084/jem.20090847.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 2003;63(21):7462–7.PubMedGoogle Scholar
  53. 53.
    Wilmotte R, Burkhardt K, Kindler V, Belkouch MC, Dussex G, Tribolet N, et al. B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport. 2005;16(10):1081–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-Oncology. 2009;11(4):394–402.  https://doi.org/10.1215/15228517-2008-104.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology. 2015;17(8):1064–75.  https://doi.org/10.1093/neuonc/nou307.PubMedCrossRefGoogle Scholar
  56. 56.
    Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology. 2016;18(2):195–205.  https://doi.org/10.1093/neuonc/nov172.PubMedCrossRefGoogle Scholar
  57. 57.
    Garber ST, Hashimoto Y, Weathers SP, Xiu J, Gatalica Z, Verhaak RG, et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro-Oncology. 2016;18(10):1357–66.  https://doi.org/10.1093/neuonc/now132.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–94.  https://doi.org/10.1084/jem.20100643.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Han S, Feng S, Xu L, Shi W, Wang X, Wang H, et al. Tim-3 on peripheral CD4(+) and CD8(+) T cells is involved in the development of glioma. DNA Cell Biol. 2014;33(4):245–50.  https://doi.org/10.1089/dna.2013.2306.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu Z, Han H, He X, Li S, Wu C, Yu C, et al. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol Lett. 2016;11(3):1829–34.  https://doi.org/10.3892/ol.2016.4142.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res. 2017;23(1):124–36.  https://doi.org/10.1158/1078-0432.CCR-15-1535.PubMedCrossRefGoogle Scholar
  62. 62.
    Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–13.  https://doi.org/10.1016/j.immuni.2004.08.010.PubMedCrossRefGoogle Scholar
  63. 63.
    Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol. 2011;186(9):5173–83.  https://doi.org/10.4049/jimmunol.1002050.PubMedCrossRefGoogle Scholar
  64. 64.
    Belcaid Z, Phallen JA, Zeng J, See AP, Mathios D, Gottschalk C, et al. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS One. 2014;9(7):e101764.  https://doi.org/10.1371/journal.pone.0101764.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shibahara I, Saito R, Zhang R, Chonan M, Shoji T, Kanamori M, et al. OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: a clue for successful immunotherapy. Mol Cancer. 2015;14:41.  https://doi.org/10.1186/s12943-015-0307-3.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9(10):1069–77.  https://doi.org/10.1038/sj.cdd.4401073.PubMedCrossRefGoogle Scholar
  67. 67.
    Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery. 2013;72(6):1031–8; discussion 8–9.  https://doi.org/10.1227/NEU.0b013e31828cf945.
  68. 68.
    Platten M, Weller M, Wick W. Shaping the glioma immune microenvironment through tryptophan metabolism. CNS Oncol. 2012;1(1):99–106.  https://doi.org/10.2217/cns.12.6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–21.  https://doi.org/10.1158/1078-0432.CCR-12-2130.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20(20):5290–301.  https://doi.org/10.1158/1078-0432.CCR-14-0514.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    •• Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase 1 cohorts of CheckMate 143. Neuro-Oncology. 2017;  https://doi.org/10.1093/neuonc/nox208. Phase I-part results of the first clinical study of checkpoint inhibition with nivolumab and/or ipilimumab for patients with recurrent high-grade glioma.
  72. 72.
    •• Reardon DA, Omuro A, Brandes AA, Rieger J, Wick A, Sepulveda J, et al. OS10.3 Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro-oncology. 2017;19(suppl_3):iii21-iii.  https://doi.org/10.1093/neuonc/nox036.071. Phase III-part results of the first clinical study comparing nivolumab versus bevacizumab for patients with recurrent high-grade glioma.CrossRefGoogle Scholar
  73. 73.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.  https://doi.org/10.1056/NEJMoa1200690.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.  https://doi.org/10.1056/NEJMoa1501824.PubMedCrossRefGoogle Scholar
  75. 75.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.  https://doi.org/10.1056/NEJMoa1500596.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.  https://doi.org/10.1126/science.aaa1348.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Johnson DB, Lovly CM, Flavin M, Panageas KS, Ayers GD, Zhao Z, et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res. 2015;3(3):288–95.  https://doi.org/10.1158/2326-6066.CIR-14-0207.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11.  https://doi.org/10.1200/JCO.2016.66.6552.PubMedCrossRefGoogle Scholar
  79. 79.
    Erson-Omay EZ, Caglayan AO, Schultz N, Weinhold N, Omay SB, Ozduman K, et al. Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro-Oncology. 2015;17(10):1356–64.  https://doi.org/10.1093/neuonc/nov027.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ahn SM, Ansari AA, Kim J, Kim D, Chun SM, Kim J, et al. The somatic POLE P286R mutation defines a unique subclass of colorectal cancer featuring hypermutation, representing a potential genomic biomarker for immunotherapy. Oncotarget. 2016;7(42):68638–49.  https://doi.org/10.18632/oncotarget.11862.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res. 2007;13(7):2038–45.  https://doi.org/10.1158/1078-0432.CCR-06-2149.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009;15(14):4622–9.  https://doi.org/10.1158/1078-0432.CCR-08-3012.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    van Thuijl HF, Mazor T, Johnson BE, Fouse SD, Aihara K, Hong C, et al. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol. 2015;129(4):597–607.  https://doi.org/10.1007/s00401-015-1403-6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom J, Hodge JW. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004;64(21):7985–94.  https://doi.org/10.1158/0008-5472.CAN-04-1525.PubMedCrossRefGoogle Scholar
  85. 85.
    Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203(5):1259–71.  https://doi.org/10.1084/jem.20052494.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumor immunity. Nature. 2017;548(7668):471–5.  https://doi.org/10.1038/nature23465.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A. 1992;89(7):2965–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res. 2003;9(11):4247–54.PubMedGoogle Scholar
  89. 89.
    Heimberger AB, Sun W, Hussain SF, Dey M, Crutcher L, Aldape K, et al. Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro-Oncology. 2008;10(1):98–103.  https://doi.org/10.1215/15228517-2007-046.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology. 2011;13(3):324–33.  https://doi.org/10.1093/neuonc/noq157.PubMedCrossRefGoogle Scholar
  91. 91.
    Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE 2nd, Lally-Goss D, et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther. 2009;8(10):2773–9.  https://doi.org/10.1158/1535-7163.MCT-09-0124.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.  https://doi.org/10.1200/JCO.2010.28.6963.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology. 2015;17(6):854–61.  https://doi.org/10.1093/neuonc/nou348.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    •• Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomized, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.  https://doi.org/10.1016/S1470-2045(17)30517-X. The anti-EGFRvIII vaccine rindopepimut added to radiation and chemotherapy was not superior to standard of care treatment in patients with newly diagnosed glioblastoma.PubMedCrossRefGoogle Scholar
  95. 95.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.  https://doi.org/10.1056/NEJMoa0808710.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7.  https://doi.org/10.1038/nature13387.PubMedCrossRefGoogle Scholar
  97. 97.
    Liu R, Mitchell DA. Survivin as an immunotherapeutic target for adult and pediatric malignant brain tumors. Cancer Immunol Immunother: CII. 2010;59(2):183–93.  https://doi.org/10.1007/s00262-009-0757-9.PubMedCrossRefGoogle Scholar
  98. 98.
    Komata T, Kanzawa T, Kondo Y, Kondo S. Telomerase as a therapeutic target for malignant gliomas. Oncogene. 2002;21(4):656–63.  https://doi.org/10.1038/sj.onc.1205072.PubMedCrossRefGoogle Scholar
  99. 99.
    Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ, et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res. 2010;16(2):474–85.  https://doi.org/10.1158/1078-0432.CCR-09-1322.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Li X, Wang Y, Wang Y, Zhen H, Yang H, Fei Z, et al. Expression of EphA2 in human astrocytic tumors: correlation with pathologic grade, proliferation and apoptosis. Tumour Biol. 2007;28(3):165–72.  https://doi.org/10.1159/000103010.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang LF, Fokas E, Bieker M, Rose F, Rexin P, Zhu Y, et al. Increased expression of EphA2 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. Oncol Rep. 2008;19(1):151–6.PubMedGoogle Scholar
  102. 102.
    Akiyama Y, Komiyama M, Miyata H, Yagoto M, Ashizawa T, Iizuka A, et al. Novel cancer-testis antigen expression on glioma cell lines derived from high-grade glioma patients. Oncol Rep. 2014;31(4):1683–90.  https://doi.org/10.3892/or.2014.3049.PubMedCrossRefGoogle Scholar
  103. 103.
    Reardon D, Peereboom D, Nabors B, Fink K, Phuphanich S, Mikkelsen T, et al. ATIM-11. Phase 2 trial of SL-701, a novel immunotherapy comprised of synthetic short peptides against GBM targets IL-13Rα2, EphA2, and survivin, in adults with second-line recurrent GBM: interim results. Neuro-Oncology. 2016;18(suppl_6):vi20-vi.  https://doi.org/10.1093/neuonc/now212.076.CrossRefGoogle Scholar
  104. 104.
    Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother: CII. 2013;62(1):125–35.  https://doi.org/10.1007/s00262-012-1319-0.PubMedCrossRefGoogle Scholar
  105. 105.
    Wen P, Reardon D, Phuphanich S, Aiken R, Landolfi J, Curry W, et al. AT-60 A randomized double blind placebo-controlled phase 2 trial of dendritic cell (DC) vaccine ICT-107 following standard treatment in newly diagnosed patients with GBM. Neuro-Oncology. 2014;16(Suppl 5):v22-v.  https://doi.org/10.1093/neuonc/nou237.59.CrossRefGoogle Scholar
  106. 106.
    Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neuro-Oncol. 2011;103(2):231–8.  https://doi.org/10.1007/s11060-010-0383-6.CrossRefGoogle Scholar
  107. 107.
    Dziurzynski K, Chang SM, Heimberger AB, Kalejta RF, McGregor Dallas SR, Smit M, et al. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-Oncology. 2012;14(3):246–55.  https://doi.org/10.1093/neuonc/nor227.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Soderberg-Naucler C, Johnsen JI. Cytomegalovirus in human brain tumors: role in pathogenesis and potential treatment options. World J Exp Med. 2015;5(1):1–10.  https://doi.org/10.5493/wjem.v5.i1.1.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015;519(7543):366–9.  https://doi.org/10.1038/nature14320.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res. 2013;19(1):205–14.  https://doi.org/10.1158/1078-0432.CCR-11-3358.PubMedCrossRefGoogle Scholar
  111. 111.
    Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS, et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-Oncology. 2014;16(2):274–9.  https://doi.org/10.1093/neuonc/not203.PubMedCrossRefGoogle Scholar
  112. 112.
    Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005;11(15):5515–25.  https://doi.org/10.1158/1078-0432.CCR-05-0464.PubMedCrossRefGoogle Scholar
  113. 113.
    Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 2004;64(14):4973–9.  https://doi.org/10.1158/0008-5472.CAN-03-3505.PubMedCrossRefGoogle Scholar
  114. 114.
    • Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21.  https://doi.org/10.1038/nature22991. This study provides proof-of concept that an effective antitumor T cell response can be generated using an individualized tumor-specific neoantigen vaccine.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Plautz GE, Miller DW, Barnett GH, Stevens GH, Maffett S, Kim J, et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res. 2000;6(6):2209–18.PubMedGoogle Scholar
  116. 116.
    Tsuboi K, Saijo K, Ishikawa E, Tsurushima H, Takano S, Morishita Y, et al. Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas. Clin Cancer Res. 2003;9(9):3294–302.PubMedGoogle Scholar
  117. 117.
    Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74(13):3466–76.  https://doi.org/10.1158/0008-5472.CAN-14-0296.PubMedCrossRefGoogle Scholar
  118. 118.
    •• Reap EA, Suryadevara CM, Batich KA, Sanchez-Perez L, Archer GE, Schmittling RJ, et al. Dendritic Cells Enhance Polyfunctionality of Adoptively Transferred T Cells That Target Cytomegalovirus in Glioblastoma. Cancer Res. 2018;78(1):256–64.  https://doi.org/10.1158/0008-5472.CAN-17-0469. This study demonstrates proof-of concept of an improved polyclonal CMV-specific T cell response against recurrent glioblastoma by vaccination with a CMV-specific DC vaccine.PubMedCrossRefGoogle Scholar
  119. 119.
    Krebs S, Rodriguez-Cruz TG, Derenzo C, Gottschalk S. Genetically modified T cells to target glioblastoma. Frontiers Oncol. 2013;3:322.  https://doi.org/10.3389/fonc.2013.00322.CrossRefGoogle Scholar
  120. 120.
    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.  https://doi.org/10.1126/scitranslmed.3005930.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.  https://doi.org/10.1056/NEJMoa1103849.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kong S, Sengupta S, Tyler B, Bais AJ, Ma Q, Doucette S, et al. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin Cancer Res. 2012;18(21):5949–60.  https://doi.org/10.1158/1078-0432.CCR-12-0319.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jin J, Joo KM, Lee SJ, Jo MY, Kim Y, Jin Y, et al. Synergistic therapeutic effects of cytokine-induced killer cells and temozolomide against glioblastoma. Oncol Rep. 2011;25(1):33–9.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap EA, et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10):1043–53.  https://doi.org/10.1089/hum.2012.041.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. 2015;7(275):275ra22.  https://doi.org/10.1126/scitranslmed.aaa4963.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther. 2013;21(3):629–37.  https://doi.org/10.1038/mt.2012.210.PubMedCrossRefGoogle Scholar
  127. 127.
    •• O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399)  https://doi.org/10.1126/scitranslmed.aaa0984. First results from an exploratory cohort of patients treated with EGFRvIII-CAR T cells for recurrent glioblastoma.
  128. 128.
    Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72.  https://doi.org/10.1158/1078-0432.CCR-15-0428.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9.  https://doi.org/10.1056/NEJMoa1610497.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    •• Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101.  https://doi.org/10.1001/jamaoncol.2017.0184. First results from a phase I study investigating treatment with autologous CMV-specific T cells genetically modified to express a HER2-CAR for recurrent glioblastoma.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Speranza MC, Passaro C, Ricklefs F, Kasai K, Klein SR, Nakashima H, et al. Preclinical investigation of combined gene-mediated cytotoxic immunotherapy and immune checkpoint blockade in glioblastoma. Neuro-Oncology. 2018;20(2):225–35.  https://doi.org/10.1093/neuonc/nox139.PubMedCrossRefGoogle Scholar
  132. 132.
    Kim JW, Kane JR, Young JS, Chang AL, Kanojia D, Morshed RA, et al. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma. Hum Gene Ther. 2015;26(9):635–46.  https://doi.org/10.1089/hum.2015.008.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Forsyth P, Roldan G, George D, Wallace C, Palmer CA, Morris D, et al. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther. 2008;16(3):627–32.  https://doi.org/10.1038/sj.mt.6300403.PubMedCrossRefGoogle Scholar
  134. 134.
    Nandi S, Ulasov IV, Tyler MA, Sugihara AQ, Molinero L, Han Y, et al. Low-dose radiation enhances survivin-mediated virotherapy against malignant glioma stem cells. Cancer Res. 2008;68(14):5778–84.  https://doi.org/10.1158/0008-5472.CAN-07-6441.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Chiocca EA, Abbed KM, Tatter S, Louis DN, Hochberg FH, Barker F, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther. 2004;10(5):958–66.  https://doi.org/10.1016/j.ymthe.2004.07.021.PubMedCrossRefGoogle Scholar
  136. 136.
    Lang FF, Conrad C, Gomez-Manzano C, Tufaro F, Yung WKA, Sawaya R, et al. First-in-human phase I clinical trial of oncolytic delta-24-RGD (DNX-2401) with biological endpoints: implications for viro-immunotherapy. Neuro-oncology. 2014;16(Suppl 3):iii39-iii.  https://doi.org/10.1093/neuonc/nou208.61.CrossRefGoogle Scholar
  137. 137.
    Fueyo J, Gomez-Manzano C, Villalobos P, Rodriguez-Canales J, Wistuba I, Hess KR, et al. ATIM-08. immunomarkers in the DNX-2401 (DELTA-24-RGD) oncolytic virus phase I clinical trial. Neuro-oncology. 2017;19(suppl_6):vi27-vi.  https://doi.org/10.1093/neuonc/nox168.104.CrossRefGoogle Scholar
  138. 138.
    Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11(17):2389–401.  https://doi.org/10.1089/104303400750038499.PubMedCrossRefGoogle Scholar
  139. 139.
    Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D, et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther. 2005;12(10):835–48.  https://doi.org/10.1038/sj.cgt.7700851.PubMedCrossRefGoogle Scholar
  140. 140.
    Okada H, Pollack IF, Lotze MT, Lunsford LD, Kondziolka D, Lieberman F, et al. Gene therapy of malignant gliomas: a phase I study of IL-4-HSV-TK gene-modified autologous tumor to elicit an immune response. Hum Gene Ther. 2000;11(4):637–53.  https://doi.org/10.1089/10430340050015824.PubMedCrossRefGoogle Scholar
  141. 141.
    Wakabayashi T, Natsume A, Hashizume Y, Fujii M, Mizuno M, Yoshida J. A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J Gene Med. 2008;10(4):329–39.  https://doi.org/10.1002/jgm.1160.PubMedCrossRefGoogle Scholar
  142. 142.
    Chiocca EA, Smith KM, McKinney B, Palmer CA, Rosenfeld S, Lillehei K, et al. A phase I trial of Ad.hIFN-beta gene therapy for glioma. Mol Ther. 2008;16(3):618–26.  https://doi.org/10.1038/sj.mt.6300396.CrossRefPubMedGoogle Scholar
  143. 143.
    Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 2017;32(2):253–67 e5.  https://doi.org/10.1016/j.ccell.2017.07.006.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Perlmutter Cancer Institute, Brain Tumor ProgramNYU Langone Medical CenterNew YorkUSA
  2. 2.Center for Neuro-OncologyDana-Farber Cancer InstituteBostonUSA

Personalised recommendations