Update of HIV-Associated Sensory Neuropathies

  • Angela Aziz-Donnelly
  • Taylor B. Harrison
Neuromuscular Disorders (C Fournier, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuromuscular Disorders


Purpose of review

HIV-sensory neuropathy (HIV-SN) remains a common complication of HIV infection and may be associated with significant morbidity due to neuropathic pain. The overall purpose of this review is to discuss trends in the changing epidemiology in HIV-SN, new data regarding the pathophysiology of the condition, and discuss approaches to management.

Recent findings

While HIV-SN has been historically considered the most common neurological complication of HIV infection, improved accessibility to effective combination antiretroviral therapy (cART), use of less neurotoxic antiretroviral medication regimens, and trends towards earlier introduction of treatment have impacted the condition: overall incident HIV-SN is likely decreased compared to prior rates and patients afflicted by HIV-SN may more frequently have asymptomatic or subclinical disease. Traditional predictors of HIV-SN have also changed, as traditional indices of severe immune deficiency such as low CD4 count and high viral load no longer predict HIV-SN. Emerging evidence supports the contention that both peripheral and central mechanisms underlying the generation as well as persistence of neuropathic pain in HIV-SN exist. It is important to recognize that even mild neuropathic pain in this clinical population is associated with meaningful impairment in quality of life and function, which emphasizes the clinical importance of recognizing and treating the condition. The general approach to management of neuropathic pain in HIV-SN is the introduction of symptomatic analgesic therapy. There exist, however, few evidence-based analgesic options for HIV-SN based on available clinical data. Symptomatic treatment trials are increasingly recognized to have been potentially confounded by more robust placebo response than that observed in other neuropathic pain conditions. In the authors’ experience, use of analgesic therapies with proven efficacy in other neuropathic pain conditions is appropriate, bearing in consideration potential pharmacokinetic interactions with the cART regimen. Combination analgesic regimens may also achieve meaningful analgesic responses, particularly when drugs with differing mechanisms of action are utilized. It is paramount that the patient is appropriately counseled regarding expectations and the anticipated benefit of analgesic therapy, as pain relief is often incomplete but clinically meaningful improvement in pain and function can be achieved.


HIV Polyneuropathy Distal symmetric polyneuropathy Peripheral neuropathy Sensory neuropathy Neuropathic pain 


Compliance with Ethical Standards

Conflict of Interest

Angela Aziz-Donnelly declares no potential conflicts of interest.

Taylor B. Harrison reports personal fees from Medlink.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    AIDSinfo. Core Epidemiology Slides. Joint United Nations Programme on HIV/AIDS, Genevea, Switzerland 2017. Accessed 12 July 2017
  2. 2.
    Berger AR, Arezzo JC, Schaumburg HH, Skowron G, Merigan T, Bozzette S, et al. 2′,3′-Dideoxycytidine (ddC) toxic neuropathy: a study of 52 patients. Neurology. 1993;43(2):358–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Cornblath DR, Chaudhry V, Carter K, Lee D, Seysedadr M, Miernicki M, et al. Total neuropathy score: validation and reliability study. Neurology. 1999;53(8):1660–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Cornblath DR, McArthur JC. Predominantly sensory neuropathy in patients with AIDS and AIDS-related complex. Neurology. 1988;38(5):794–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Tagliati M, Grinnell J, Godbold J, Simpson DM. Peripheral nerve function in HIV infection: clinical, electrophysiologic, and laboratory findings. Arch Neurol. 1999;56(1):84–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Schifitto G, McDermott MP, McArthur JC, Marder K, Sacktor N, Epstein L, et al. Incidence of and risk factors for HIV-associated distal sensory polyneuropathy. Neurology. 2002;58(12):1764–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Schifitto G, McDermott MP, McArthur JC, Marder K, Sacktor N, McClernon DR, et al. Markers of immune activation and viral load in HIV-associated sensory neuropathy. Neurology. 2005;64(5):842–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Morgello S, Estanislao L, Simpson D, Geraci A, DiRocco A, Gerits P, et al. HIV-associated distal sensory polyneuropathy in the era of highly active antiretroviral therapy: the Manhattan HIV Brain Bank. Arch Neurol. 2004;61(4):546–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Pandya R, Krentz HB, Gill MJ, Power C. HIV-related neurological syndromes reduce health-related quality of life. Can J Neurol Sci. 2005;32(2):201–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D, Alexander T, et al. Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER Study. Arch Neurol. 2010;67(5):552–8. doi: 10.1001/archneurol.2010.76.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Keltner JR, Vaida F, Ellis RJ, Moeller-Bertram T, Fitzsimmons C, Duarte NA, et al. Health-related quality of life ‘well-being’ in HIV distal neuropathic pain is more strongly associated with depression severity than with pain intensity. Psychosomatics. 2012;53(4):380–6. doi: 10.1016/j.psym.2012.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ghosh S, Chandran A, Jansen JP. Epidemiology of HIV-related neuropathy: a systematic literature review. AIDS Res Hum Retrovir. 2012;28(1):36–48. doi: 10.1089/AID.2011.0116.CrossRefPubMedGoogle Scholar
  13. 13.
    Dal Pan GJ, Glass JD, McArthur JC. Clinicopathologic correlations of HIV-1-associated vacuolar myelopathy: an autopsy-based case-control study. Neurology. 1994;44(11):2159–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Mah V, Vartavarian LM, Akers MA, Vinters HV. Abnormalities of peripheral nerve in patients with human immunodeficiency virus infection. Ann Neurol. 1988;24(6):713–7.CrossRefPubMedGoogle Scholar
  15. 15.
    So YT, Holtzman DM, Abrams DI, Olney RK. Peripheral neuropathy associated with acquired immunodeficiency syndrome. Prevalence and clinical features from a population-based survey. Arch Neurol. 1988;45(9):945–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Childs EA, Lyles RH, Selnes OA, Chen B, Miller EN, Cohen BA, et al. Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology. 1999;52(3):607–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Simpson DM, Katzenstein DA, Hughes MD, Hammer SM, Williamson DL, Jiang Q, et al. Neuromuscular function in HIV infection: analysis of a placebo-controlled combination antiretroviral trial. AIDS Clinical Group 175/801 Study Team. AIDS. 1998;12(18):2425–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Simpson DM, Haidich AB, Schifitto G, Yiannoutsos CT, Geraci AP, McArthur JC, et al. Severity of HIV-associated neuropathy is associated with plasma HIV-1 RNA levels. AIDS. 2002;16(3):407–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Simpson DM, Kitch D, Evans SR, McArthur JC, Asmuth DM, Cohen B, et al. HIV neuropathy natural history cohort study: assessment measures and risk factors. Neurology. 2006;66(11):1679–87.CrossRefPubMedGoogle Scholar
  20. 20.
    Pettersen JA, Jones G, Worthington C, Krentz HB, Keppler OT, Hoke A, et al. Sensory neuropathy in human immunodeficiency virus/acquired immunodeficiency syndrome patients: protease inhibitor-mediated neurotoxicity. Ann Neurol. 2006;59(5):816–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Fichtenbaum CJ, Clifford DB, Powderly WG. Risk factors for dideoxynucleoside-induced toxic neuropathy in patients with the human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10(2):169–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Verma A, Schein RM, Jayaweera DT, Kett DH. Fulminant neuropathy and lactic acidosis associated with nucleoside analog therapy. Neurology. 1999;53(6):1365–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Ellis RJ, Marquie-Beck J, Delaney P, Alexander T, Clifford DB, McArthur JC, et al. Human immunodeficiency virus protease inhibitors and risk for peripheral neuropathy. Ann Neurol. 2008;64(5):566–72. doi: 10.1002/ana.21484.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen H, Clifford DB, Deng L, Wu K, Lee AJ, Bosch RJ, et al. Peripheral neuropathy in ART-experienced patients: prevalence and risk factors. J Neuro-Oncol. 2013;19(6):557–64. doi: 10.1007/s13365-013-0216-4.Google Scholar
  25. 25.
    Evans SR, Ellis RJ, Chen H, Yeh TM, Lee AJ, Schifitto G, et al. Peripheral neuropathy in HIV: prevalence and risk factors. AIDS. 2011;25(7):919–28. doi: 10.1097/QAD.0b013e328345889d.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    • Lee AJ, Bosch RJ, Evans SR, Wu K, Harrison T, Grant P, et al. Patterns of peripheral neuropathy in ART-naive patients initiating modern ART regimen. J Neuro-Oncol. 2015;21(2):210–8. doi: 10.1007/s13365-015-0327-1. This study suggests that, amongst patient treated with current antiretroviral regimens, the frequency of symptomatic HIV-SN may decrease.Google Scholar
  27. 27.
    Department of Health and Human Services. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. In AIDSInfo. Accessed 14 July 2016.
  28. 28.
    Malvar J, Vaida F, Sanders CF, Atkinson JH, Bohannon W, Keltner J, et al. Predictors of new-onset distal neuropathic pain in HIV-infected individuals in the era of combination antiretroviral therapy. Pain. 2015;156(4):731–9. doi: 10.1097/ Scholar
  29. 29.
    Hall HI, Frazier EL, Rhodes P, Holtgrave DR, Furlow-Parmley C, Tang T, et al. Differences in human immunodeficiency virus care and treatment among subpopulations in the United States. JAMA Intern Med. 2013;173(14):1337–44. doi: 10.1001/jamainternmed.2013.6841.CrossRefPubMedGoogle Scholar
  30. 30.
    Pardo CA, McArthur JC, Griffin JW. HIV neuropathy: insights in the pathology of HIV peripheral nerve disease. J Peripher Nerv Syst. 2001;6(1):21–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Polydefkis M, Yiannoutsos CT, Cohen BA, Hollander H, Schifitto G, Clifford DB, et al. Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology. 2002;58(1):115–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Kamerman PR, Moss PJ, Weber J, Wallace VC, Rice AS, Huang W. Pathogenesis of HIV-associated sensory neuropathy: evidence from in vivo and in vitro experimental models. J Peripher Nerv Syst. 2012;17(1):19–31. doi: 10.1111/j.1529-8027.2012.00373.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Yoshioka M, Shapshak P, Srivastava AK, Stewart RV, Nelson SJ, Bradley WG, et al. Expression of HIV-1 and interleukin-6 in lumbosacral dorsal root ganglia of patients with AIDS. Neurology. 1994;44(6):1120–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Nagano I, Shapshak P, Yoshioka M, Xin K, Nakamura S, Bradley WG. Increased NADPH-diaphorase reactivity and cytokine expression in dorsal root ganglia in acquired immunodeficiency syndrome. J Neurol Sci. 1996;136(1–2):117–28.CrossRefPubMedGoogle Scholar
  35. 35.
    de la Monte SM, Gabuzda DH, Ho DD, Brown RH Jr, Hedley-Whyte ET, Schooley RT, et al. Peripheral neuropathy in the acquired immunodeficiency syndrome. Ann Neurol. 1988;23(5):485–92.CrossRefPubMedGoogle Scholar
  36. 36.
    Kennedy JM, Hoke A, Zhu Y, Johnston JB, van Marle G, Silva C, et al. Peripheral neuropathy in lentivirus infection: evidence of inflammation and axonal injury. AIDS. 2004;18(9):1241–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Lakritz JR, Thibault DM, Robinson JA, Campbell JH, Miller AD, Williams KC, et al. alpha4-integrin antibody treatment blocks monocyte/macrophage traffic to, vascular cell adhesion molecule-1 expression in, and pathology of the dorsal root ganglia in an SIV macaque model of HIV-peripheral neuropathy. Am J Pathol. 2016;186(7):1754–61. doi: 10.1016/j.ajpath.2016.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    • Lakritz JR, Yalamanchili S, Polydefkis MJ, Miller AD, McGrath MS, Williams KC, et al. An oral form of methylglyoxal-bis-guanylhydrazone reduces monocyte activation and traffic to the dorsal root ganglia in a primate model of HIV-peripheral neuropathy. J Neuro-Oncol. 2017; doi: 10.1007/s13365-017-0529-9. This study suggests that macrophages play an important role in HIV-SN pathology at the level of the dorsal root ganglia.
  39. 39.
    Keswani SC, Polley M, Pardo CA, Griffin JW, McArthur JC, Hoke A. Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann Neurol. 2003;54(3):287–96. doi: 10.1002/ana.10645.CrossRefPubMedGoogle Scholar
  40. 40.
    Melli G, Keswani SC, Fischer A, Chen W, Hoke A. Spatially distinct and functionally independent mechanisms of axonal degeneration in a model of HIV-associated sensory neuropathy. Brain. 2006;129(Pt 5):1330–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Milligan ED, Mehmert KK, Hinde JL, Harvey LO, Martin D, Tracey KJ, et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res. 2000;861(1):105–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Milligan ED, O'Connor KA, Nguyen KT, Armstrong CB, Twining C, Gaykema RP, et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci. 2001;21(8):2808–19.PubMedGoogle Scholar
  43. 43.
    Hao S. The molecular and pharmacological mechanisms of HIV-related neuropathic pain. Curr Neuropharmacol. 2013;11(5):499–512. doi: 10.2174/1570159X11311050005.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dalakas MC, Semino-Mora C, Leon-Monzon M. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2′3′-dideoxycytidine (ddC). Lab Investig. 2001;81(11):1537–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Gardner K, Hall PA, Chinnery PF, Payne BA. HIV treatment and associated mitochondrial pathology: review of 25 years of in vitro, animal, and human studies. Toxicol Pathol. 2014;42(5):811–22. doi: 10.1177/0192623313503519.CrossRefPubMedGoogle Scholar
  46. 46.
    Lehmann HC, Chen W, Borzan J, Mankowski JL, Hoke A. Mitochondrial dysfunction in distal axons contributes to human immunodeficiency virus sensory neuropathy. Ann Neurol. 2011;69(1):100–10. doi: 10.1002/ana.22150.CrossRefPubMedGoogle Scholar
  47. 47.
    Cherry CL, Rosenow A, Affandi JS, McArthur JC, Wesselingh SL, Price P. Cytokine genotype suggests a role for inflammation in nucleoside analog-associated sensory neuropathy (NRTI-SN) and predicts an individual’s NRTI-SN risk. AIDS Res Hum Retrovir. 2008;24(2):117–23. doi: 10.1089/aid.2007.0168.CrossRefPubMedGoogle Scholar
  48. 48.
    Hulgan T, Haas DW, Haines JL, Ritchie MD, Robbins GK, Shafer RW, et al. Mitochondrial haplogroups and peripheral neuropathy during antiretroviral therapy: an adult AIDS clinical trials group study. AIDS. 2005;19(13):1341–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Kallianpur AR, Hulgan T, Canter JA, Ritchie MD, Haines JL, Robbins GK, et al. Hemochromatosis (HFE) gene mutations and peripheral neuropathy during antiretroviral therapy. AIDS. 2006;20(11):1503–13. doi: 10.1097/01.aids.0000237366.56864.3c.CrossRefPubMedGoogle Scholar
  50. 50.
    Huang W, Calvo M, Pheby T, Bennett DL, Rice AS. A rodent model of HIV protease inhibitor indinavir induced peripheral neuropathy. Pain. 2017;158(1):75–85. doi: 10.1097/j.pain.0000000000000727.CrossRefPubMedGoogle Scholar
  51. 51.
    • Keltner JR, Fennema-Notestine C, Vaida F, Wang D, Franklin DR, Dworkin RH, et al. HIV-associated distal neuropathic pain is associated with smaller total cerebral cortical gray matter. J Neuro-Oncol. 2014;20(3):209–18. doi: 10.1007/s13365-014-0236-8. This study suggests that central mechanisms may be important in the pathophysiology of neuropathic pain in HIV-SN.Google Scholar
  52. 52.
    • Keltner JR, Connolly CG, Vaida F, Jenkinson M, Fennema-Notestine C, Archibald S, et al. HIV distal neuropathic pain is associated with smaller ventral posterior cingulate cortex. Pain Med. 2017;18(3):428–40. doi: 10.1093/pm/pnw180. This study further implicates central nervous system pathology as a contributor to HIV-SN neuropathic pain.PubMedGoogle Scholar
  53. 53.
    McArthur JC, Yiannoutsos C, Simpson DM, Adornato BT, Singer EJ, Hollander H, et al. A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group Team 291. Neurology. 2000;54(5):1080–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Schifitto G, Yiannoutsos C, Simpson DM, Adornato BT, Singer EJ, Hollander H, et al. Long-term treatment with recombinant nerve growth factor for HIV-associated sensory neuropathy. Neurology. 2001;57(7):1313–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Youle M, Osio M. A double-blind, parallel-group, placebo-controlled, multicentre study of acetyl L-carnitine in the symptomatic treatment of antiretroviral toxic neuropathy in patients with HIV-1 infection. HIV Med. 2007;8(4):241–50. doi: 10.1111/j.1468-1293.2007.00467.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Valcour V, Yeh TM, Bartt R, Clifford D, Gerschenson M, Evans SR, et al. Acetyl-l-carnitine and nucleoside reverse transcriptase inhibitor-associated neuropathy in HIV infection. HIV Med. 2009;10(2):103–10. doi: 10.1111/j.1468-1293.2008.00658.x.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Evans SR, Simpson DM, Kitch DW, King A, Clifford DB, Cohen BA, et al. A randomized trial evaluating prosaptide for HIV-associated sensory neuropathies: use of an electronic diary to record neuropathic pain. PLoS One. 2007;2(6):e551. doi: 10.1371/journal.pone.0000551.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Martin C, Solders G, Sonnerborg A, Hansson P. Antiretroviral therapy may improve sensory function in HIV-infected patients: a pilot study. Neurology. 2000;54(11):2120–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Markus R, Brew BJ. HIV-1 peripheral neuropathy and combination antiretroviral therapy. Lancet. 1998;352(9144):1906–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Shikuma CM, Bennett K, Ananworanich J, Gerschenson M, Teeratakulpisarn N, Jadwattanakul T, et al. Distal leg epidermal nerve fiber density as a surrogate marker of HIV-associated sensory neuropathy risk: risk factors and change following initial antiretroviral therapy. J Neuro-Oncol. 2015;21(5):525–34. doi: 10.1007/s13365-015-0352-0.Google Scholar
  61. 61.
    Phillips TJ, Cherry CL, Cox S, Marshall SJ, Rice AS. Pharmacological treatment of painful HIV-associated sensory neuropathy: a systematic review and meta-analysis of randomised controlled trials. PLoS One. 2010;5(12):e14433. doi: 10.1371/journal.pone.0014433.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Nicholas PK, Voss JG, Corless IB, Lindgren TG, Wantland DJ, Kemppainen JK, et al. Unhealthy behaviours for self-management of HIV-related peripheral neuropathy. AIDS Care. 2007;19(10):1266–73. doi: 10.1080/09540120701408928.CrossRefPubMedGoogle Scholar
  63. 63.
    Nicholas PK, Kemppainen JK, Canaval GE, Corless IB, Sefcik EF, Nokes KM, et al. Symptom management and self-care for peripheral neuropathy in HIV/AIDS. AIDS Care. 2007;19(2):179–89. doi: 10.1080/09540120600971083.CrossRefPubMedGoogle Scholar
  64. 64.
    •• Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–73. doi: 10.1016/S1474-4422(14)70251-0. A systematic review of randomized double-blind studies investigating the efficacy of oral and topical therapies for the treatment of neuropathic pain which proposes important recommendations for therapeutic treatment options.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kieburtz K, Simpson D, Yiannoutsos C, Max MB, Hall CD, Ellis RJ, et al. A randomized trial of amitriptyline and mexiletine for painful neuropathy in HIV infection. AIDS Clinical Trial Group 242 Protocol Team. Neurology. 1998;51(6):1682–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Shlay JC, Chaloner K, Max MB, Flaws B, Reichelderfer P, Wentworth D, et al. Acupuncture and amitriptyline for pain due to HIV-related peripheral neuropathy: a randomized controlled trial. Terry Beirn Community Programs for Clinical Research on AIDS. JAMA. 1998;280(18):1590–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Hahn K, Arendt G, Braun JS, von Giesen HJ, Husstedt IW, Maschke M, et al. A placebo-controlled trial of gabapentin for painful HIV-associated sensory neuropathies. J Neurol. 2004;251(10):1260–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Simpson DM, Schifitto G, Clifford DB, Murphy TK, Durso-De Cruz E, Glue P, et al. Pregabalin for painful HIV neuropathy: a randomized, double-blind, placebo-controlled trial. Neurology. 2010;74(5):413–20. doi: 10.1212/WNL.0b013e3181ccc6ef.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Estanislao L, Carter K, McArthur J, Olney R, Simpson D. A randomized controlled trial of 5% lidocaine gel for HIV-associated distal symmetric polyneuropathy. J Acquir Immune Defic Syndr. 2004;37(5):1584–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Paice JA, Ferrans CE, Lashley FR, Shott S, Vizgirda V, Pitrak D. Topical capsaicin in the management of HIV-associated peripheral neuropathy. J Pain Symptom Manag. 2000;19(1):45–52.CrossRefGoogle Scholar
  71. 71.
    Simpson DM, Dorfman D, Olney RK, McKinley G, Dobkin J, So Y, et al. Peptide T in the treatment of painful distal neuropathy associated with AIDS: results of a placebo-controlled trial. The Peptide T Neuropathy Study Group. Neurology. 1996;47(5):1254–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Kemper CA, Kent G, Burton S, Deresinski SC. Mexiletine for HIV-infected patients with painful peripheral neuropathy: a double-blind, placebo-controlled, crossover treatment trial. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;19(4):367–72.CrossRefPubMedGoogle Scholar
  73. 73.
    Simpson DM, McArthur JC, Olney R, Clifford D, So Y, Ross D, et al. Lamotrigine for HIV-associated painful sensory neuropathies: a placebo-controlled trial. Neurology. 2003;60(9):1508–14.CrossRefPubMedGoogle Scholar
  74. 74.
    Simpson DM, Olney R, McArthur JC, Khan A, Godbold J, Ebel-Frommer K. A placebo-controlled trial of lamotrigine for painful HIV-associated neuropathy. Neurology. 2000;54(11):2115–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Simpson DM, Brown S, Tobias J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology. 2008;70(24):2305–13. doi: 10.1212/01.wnl.0000314647.35825.9c.CrossRefPubMedGoogle Scholar
  76. 76.
    Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology. 2007;68(7):515–21.CrossRefPubMedGoogle Scholar
  77. 77.
    Ellis RJ, Toperoff W, Vaida F, van den Brande G, Gonzales J, Gouaux B, et al. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology. 2009;34(3):672–80. doi: 10.1038/npp.2008.120.CrossRefPubMedGoogle Scholar
  78. 78.
    Harrison T, Miyahara S, Lee A, Evans S, Bastow B, Simpson D, et al. Experience and challenges presented by a multicenter crossover study of combination analgesic therapy for the treatment of painful HIV-associated polyneuropathies. Pain Med. 2013;14(7):1039–47. doi: 10.1111/pme.12084.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gilron I, Bailey JM, Tu D, Holden RR, Jackson AC, Houlden RL. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. Lancet. 2009;374(9697):1252–61. doi: 10.1016/S0140-6736(09)61081-3.CrossRefPubMedGoogle Scholar
  80. 80.
    Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352(13):1324–34.CrossRefPubMedGoogle Scholar
  81. 81.
    Passik SD, Kirsh KL, Donaghy KB, Portenoy RK. Pain and aberrant drug-related behaviors in medically ill patients with and without histories of substance abuse. Clin J Pain. 2006;22(2):173–81.CrossRefPubMedGoogle Scholar
  82. 82.
    Chou R, Fanciullo GJ, Fine PG, Miaskowski C, Passik SD, Portenoy RK. Opioids for chronic noncancer pain: prediction and identification of aberrant drug-related behaviors: a review of the evidence for an American Pain Society and American Academy of Pain Medicine clinical practice guideline. J Pain. 2009;10(2):131–46. doi: 10.1016/j.jpain.2008.10.009.CrossRefPubMedGoogle Scholar
  83. 83.
    •• Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA. 2016;315(15):1624–45. doi: 10.1001/jama.2016.1464. An important guideline for clinicians caring for patients with HIV-SN for whom opioid therapy is either current or considered.CrossRefPubMedGoogle Scholar
  84. 84.
    Franklin GM, American Academy of N. Opioids for chronic noncancer pain: a position paper of the American Academy of Neurology. Neurology. 2014;83(14):1277–84. doi: 10.1212/WNL.0000000000000839.CrossRefPubMedGoogle Scholar
  85. 85.
    Nicholas PK, Voss J, Wantland D, Lindgren T, Huang E, Holzemer WL, et al. Prevalence, self-care behaviors, and self-care activities for peripheral neuropathy symptoms of HIV/AIDS. Nurs Health Sci. 2010;12(1):119–26. doi: 10.1111/j.1442-2018.2009.00505.x.CrossRefPubMedGoogle Scholar
  86. 86.
    Phillips KD, Skelton WD, Hand GA. Effect of acupuncture administered in a group setting on pain and subjective peripheral neuropathy in persons with human immunodeficiency virus disease. J Altern Complement Med. 2004;10(3):449–55. doi: 10.1089/1075553041323678.CrossRefPubMedGoogle Scholar
  87. 87.
    Dorfman D, George MC, Schnur J, Simpson DM, Davidson G, Montgomery G. Hypnosis for treatment of HIV neuropathic pain: a preliminary report. Pain Med. 2013;14(7):1048–56. doi: 10.1111/pme.12074.CrossRefPubMedGoogle Scholar
  88. 88.
    Mkandla K, Myezwa H, Musenge E. The effects of progressive-resisted exercises on muscle strength and health-related quality of life in persons with HIV-related poly-neuropathy in Zimbabwe. AIDS Care. 2016;28(5):639–43. doi: 10.1080/09540121.2015.1125418.CrossRefPubMedGoogle Scholar
  89. 89.
    Sandoval R, Roddey T, Giordano TP, Mitchell K, Kelley C. Randomized trial of lower extremity splinting to manage neuropathic pain and sleep disturbances in people living with HIV/AIDS. J Int Assoc Provid AIDS Care. 2016;15(3):240–7. doi: 10.1177/2325957413511112.CrossRefPubMedGoogle Scholar
  90. 90.
    van Sighem AI, Gras LA, Reiss P, Brinkman K, de Wolf F. Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. AIDS. 2010;24(10):1527–35. doi: 10.1097/QAD.0b013e32833a3946.CrossRefPubMedGoogle Scholar
  91. 91.
    Cepeda MS, Berlin JA, Gao CY, Wiegand F, Wada DR. Placebo response changes depending on the neuropathic pain syndrome: results of a systematic review and meta-analysis. Pain Med. 2012;13(4):575–95. doi: 10.1111/j.1526-4637.2012.01340.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of NeurologyEmory UniversityAtlantaUSA
  2. 2.Department of Neurology, Grady Memorial HospitalEmory University School of MedicineAtlantaUSA

Personalised recommendations