Fabry Disease: Recognition, Diagnosis, and Treatment of Neurological Features

  • Michela Ranieri
  • Gloria Bedini
  • Eugenio Agostino Parati
  • Anna Bersano
Cerebrovascular Disorders (HP Adams, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cerebrovascular Disorders

Opinion statement

Fabry disease is an X-linked, lysosomal storage disorder caused by a mutation in the GLA gene leading to a deficiency in alpha-galactosidase A enzyme (α-Gal A) activity, which in turn results in accumulation of globotriaosylceramide in the vascular endothelium and smooth muscle cells of different organs, including kidney and heart, finally leading to impairment or failure of organ function. The central and peripheral nervous systems are also affected leading to neurological manifestations such as cerebrovascular diseases, small fiber neuropathy (SFN), and dysautonomic disorders that may be the presenting clinical features in a proportion of patients. This review offers a complete update of all neurological aspects of Fabry disease and therapeutic options. The rarity of disease, as well as the incomplete knowledge regarding natural history, pathogenic mechanisms, and the uncertain efficacy of available therapies, make imperative the acquisition of standardized data on natural disease course. These data are fundamental for the development of new treatments better able to access the central nervous system, to bypass the neutralizing antibodies and to improve the heart and kidney function.


Fabry disease Neurological aspects Neuroimaging Stroke Peripheral neuropathy Treatment Enzyme recombinant treatment 



A special thank you to Dr. Myrna Rosenfeld for taking the time to review this manuscript and to Dr. Marzia Rivello, from Shire Pharmaceuticals Limited, for the support in the organization of multidisciplinary symposia on the disease.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. 1.
    Sweeley C, Klionsky B. Fabry’s disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J Biol Chem. 1963;238:3148–50.PubMedGoogle Scholar
  2. 2.
    Hers H. Inborn lysosomal diseases. Gastroenterology. 1965;48:625–33.PubMedGoogle Scholar
  3. 3.
    Brady RO. Enzymatic abnormalities in diseases of sphingolipid metabolism. Clin Chem. 1967;13:565–77.PubMedGoogle Scholar
  4. 4.
    Schiffmann R. Fabry disease. Pharmacol Ther. 2009;122(1):65–77.CrossRefPubMedGoogle Scholar
  5. 5.••
    Zarate YA, Hopkin RJ. Fabry’s disease. Lancet. 2008;372(9647):1427–35. A detailed review about pathophysiology, neurological and extraneurological manifestations in Fabry disease.CrossRefPubMedGoogle Scholar
  6. 6.
    Ishii S, Kase R, Sakuraba H, Suzuki Y. Characterization of a mutant alphagalactosidase gene product for the late-onset cardiac form of Fabry disease. Biochem Biophys Res Commun. 1993;197(3):1585–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Sakuraba H, Oshima A, Fukuhara Y, Shimmoto M, Nagao Y, Bishop DF, et al. Identification of point mutations in the alpha-galactosidase A gene in classical and atypical hemizygotes with Fabry disease. Am J Hum Genet. 1990;47(5):784–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bernstein HS, Bishop DF, Astrin KH, Kornreich R, Eng CM, Sakuraba H, et al. Fabry disease: six gene rearrangements and an exonic point mutation in the alphagalactosidase gene. J Clin Invest. 1989;83(4):1390–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shimotori M, Maruyama H, Nakamura G, Suyama T, Sakamoto F, Itoh M, et al. Novel mutations of the GLA gene in Japanese patients with Fabry disease and their functional characterization by active site specific chaperone. Hum Mutat. 2008;29(2):331.CrossRefPubMedGoogle Scholar
  10. 10.
    Kornreich R, Bishop DF, Desnick RJ. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J Biol Chem. 1990;265(16):9319–26.PubMedGoogle Scholar
  11. 11.
    Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC, et al. Mutant alphagalactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J. 2007;406(2):285–95.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA. 1999;281(3):249–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Shin SH, Kluepfel-Stahl S, Cooney AM, Kaneski CR, Quirk JM, Schiffmann R, et al. Prediction of response of mutated alpha-galactosidase A to a pharmacological chaperone. Pharmacogenet Genomics. 2008;18:773–80.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Desnick RJ, Ioannou YA. α-Galactosidase a deficiency. Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 6th ed. New York: McGraw-Hill; 1996. p. 2741–84.Google Scholar
  15. 15.
    Desnick RJ, Ioannou YA. α-Galactosidase a deficiency. Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3733–74.Google Scholar
  16. 16.
    Rombach SM, Twickler TB, Aerts JM, Linthorst GE, Wijburg FA, Hollak CE. Vasculopathy in patients with Fabry disease: current controversies and research directions. Mol Genet Metab. 2010;99(2):99–108.CrossRefPubMedGoogle Scholar
  17. 17.
    Shu L, Park JL, Byun J, Pennathur S, Kollmeyer J, Shayman JA. Decreased nitric oxide bioavailability in a mouse model of Fabry disease. J Am Soc Nephrol. 2009;20(9):1975–85.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shen JS, Meng XL, Moore DF, Quirk JM, Shayman JA, Schiffmann R, et al. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab. 2008;95(3):163–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moore DF, Kaneski CR, Askari H, Schiffmann R. The cerebral vasculopathy of Fabry disease. J Neurol Sci. 2007;257(1–2):258–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Buechner S, Moretti M, Burlina AP, Cei G, Manara R, Ricci R, et al. Central nervous system involvement in Anderson-Fabry disease: a clinical and MRI retrospective study. J Neurol Neurosurg Psychiatry. 2008;79(11):1249–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry registry. Stroke. 2009;40:788–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Buechner S, Moretti M, Burlina AP, Cei G, Manara R, Ricci R, et al. Central nervous system involvement in Anderson-Fabry disease: a clinical and MRI retrospective study. J Neurol Neurosurg Psychiatry. 2008;79:1249–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366(9499):1794–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Brouns R, Sheorajpanday R, Braxel E, Eyskens F, Baker R, Hughes D, et al. Middelheim Fabry Study (MiFaS): a retrospective Belgian study on the prevalence of Fabry disease in young patients with cryptogenic stroke. Clin Neurol Neurosurg. 2007;109(6):479–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Baptista MV, Ferreira S, Pinho-E-Melo T, Carvalho M, Cruz VT, Carmona C, et al. Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study—screening genetic conditions in Portuguese young stroke patients. Stroke. 2010;41(3):431–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Brouns R, Thijs V, Eyskens F, Van den Broeck M, Belachew S, Van Broeckhoven C, et al. Belgian Fabry study: prevalence of Fabry disease in a cohort of 1000 young patients with cerebrovascular disease. Stroke. 2010;41(5):863–8.CrossRefPubMedGoogle Scholar
  27. 27.•
    Rolfs A, Fazekas F, Grittner U, Dichgans M, Martus P, Holzhausen M, et al. Acute cerebrovascular disease in the young: the Stroke in Young Fabry Patients study. Stroke. 2013;44(2):340–9. A large observational study on the prevalence of Fabry disease in young patients with stroke.CrossRefPubMedGoogle Scholar
  28. 28.
    Shi Q, Chen J, Pongmoragot J, Lanthier S, Saposnik G. Prevalence of Fabry disease in stroke patients—a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2014;23(5):985–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Steinicke R, Gaertner B, Grittner U, Schmidt W, Dichgans M, Heuschmann PU, et al. Kidney function and white matter disease in young stroke patients: analysis of the stroke in young fabry patients study population. Stroke. 2012;43(9):2382–8.CrossRefPubMedGoogle Scholar
  30. 30.••
    Kolodny E, Fellgiebel A, Hilz MJ, Sims K, Caruso P, Phan TG, et al. Cerebrovascular involvement in Fabry disease: current status of knowledge. Stroke. 2015;46(1):302–13. An update of cerebrovascular involvement in FD, including epidemiology, clinical features and typical neuroadiological findings.CrossRefPubMedGoogle Scholar
  31. 31.
    Uçeyler N, Homola GA, Guerrero González H, Kramer D, Wanner C, Weidemann F, Solymosi L, Sommer C. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS One. 2014;9(1):e87054.Google Scholar
  32. 32.
    Crutchfield KE, Patronas NJ, Dambrosia JM, Frei KP, Banerjee TK, Barton NW, et al. Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology. 1998;50:1746–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Böttcher T, Rolfs A, Tanislav C, Bitsch A, Köhler W, Gaedeke J, et al. Fabry disease—underestimated in the differential diagnosis of multiple sclerosis? PLoS One. 2013;8:e71894.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bersano A, Lanfranconi S, Valcarenghi C, Bresolin N, Micieli G, Baron P. Neurological features of Fabry disease: clinical, pathophysiological aspects and therapy. Acta Neurol Scand. 2012;126(2):77–97.CrossRefPubMedGoogle Scholar
  35. 35.
    Valeriani M, Mariotti P, Le Pera D, Restuccia D, De Armas L, Maiese T, et al. Functional assessment of A delta and C fibers in patients with Fabry’s disease. Muscle Nerve. 2004;30:708–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Kocen RS, Thomas PK. Peripheral nerve involvement in Fabry’s disease. Arch Neurol. 1970;22(1):81–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Charrow J. A 14-year-old boy with pain in hands and feet. Pediatr Ann. 2009;38(4):190.CrossRefPubMedGoogle Scholar
  38. 38.
    Kolodny EH, Pastores GM. Anderson-Fabry disease: extrarenal, neurologic manifestations. J Am Soc Nephrol. 2002;13:S3–150.Google Scholar
  39. 39.
    Üçeyler N, Magg B, Thomas P, Wiedmann S, Heuschmann P, Sommer C. A comprehensive Fabry-related pain questionnaire for adult patients. Pain. 2014;155(11):2301–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Schiffmann R, Scott LJC. Pathophysiology and assessment of neuropathic pain in Fabry disease. Acta Paediatr. 2002;439:S48–52.CrossRefGoogle Scholar
  41. 41.
    Hilz MJ, Stemper B, Kolodny EH. Lower limb cold exposure induces pain and prolonged small fiber dysfunction in Fabry patients. Pain. 2000;84:361–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Üçeyler N, Ganendiran S, Kramer D, Sommer C. Characterization of pain in Fabry disease. Clin J Pain. 2014;30:915–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Luciano CA, Russell JW, Banerjee TK, Quirk JM, Scott LJ, Dambrosia JM, et al. Physiological characterization of neuropathy in Fabry disease. Muscle Nerve. 2002;26:622–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Toyooka K, Said G. Nerve biopsy findings in hemizygous and heterozygous patients with Fabry’s disease. J Neurol. 1997;244:464–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Gemignani F, Marbini A, Bragaglia MM, Govoni E. Pathological study of the sural nerve in Fabry’s disease. Eur Neurol. 1984;23:173–81.CrossRefPubMedGoogle Scholar
  46. 46.
    Kennedy WR. Unmyelinated nerves, challenges, and opportunities: skin biopsy and beyond. Suppl Clin Neurophysiol. 2004;57:8–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Üçeyler N, He L, Schönfeld D, Kahn A-K, Reiners K, Hilz MJ, et al. Small fibers in Fabry disease: baseline and follow-up data under enzyme replacement therapy. J Peripher Nerv Syst. 2011;16:304–14.CrossRefPubMedGoogle Scholar
  48. 48.
    De Greef BT, Hoeijmakers JG, Wolters EE, Smeets HJ, van den Wijngaard A, Merkies IS, et al. No Fabry disease in patients presenting with isolated small fiber neuropathy. PLoS One. 2016;11(2):e0148316.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cable WJ, Kolodny EH, Adams RD. Fabry disease: impaired autonomic function. Neurology. 1982;32:498–502.CrossRefPubMedGoogle Scholar
  50. 50.
    Schiffmann R, Floeter MK, Dambrosia JM, Gupta S, Moore DF, Sharabi Y, et al. Enzyme replacement therapy improves peripheral nerve and sweat function in Fabry disease. Muscle Nerve. 2003;28(6):703–10.CrossRefPubMedGoogle Scholar
  51. 51.
    Moore DF, Ye F, Schiffmann R, Butman JA. Increased signal intensity in the pulvinar on T1-weighted images: a pathognomonic MR imaging sign of Fabry disease. AJNR Am J Neuroradiol. 2003;24(6):1096–101.PubMedGoogle Scholar
  52. 52.
    Uçeyler N, Homola GA, Guerrero González H, Kramer D, Wanner C, Weidemann F, et al. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS One. 2014;9(1). e87054.Google Scholar
  53. 53.•
    Fazekas F, Enzinger C, Schmidt R, Grittner U, Giese AK, Hennerici MG, et al. Brain magnetic resonance imaging findings fail to suspect Fabry disease in young patients with an acute cerebrovascular event. Stroke. 2015;46(6):1548–53. This study does not support the utility of brain MRI for diagnosis of FD diagnosis; pulvinar sign, verterbobasilar vessels ectasia, CWMH are not considered typical of FD.CrossRefPubMedGoogle Scholar
  54. 54.
    Linthorst GE, De Rie MA, Tjiam KH, Aerts JM, Dingemans KP, Hollak CE. Misdiagnosis of Fabry disease: importance of biochemical confirmation of clinical or pathological suspicion. Br J Dermatol. 2004;150:575–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Desnick RJ, Allen KY, Desnick SJ, Raman MK, Bernlohr RW, Krivit W. Fabry’s disease: enzymatic diagnosis of hemizygotes and heterozygotes. Alpha-galactosidase activities in plasma, serum, urine, and leukocytes. J Lab Clin Med. 1973;81(2):157–71.Google Scholar
  56. 56.
    Martins AM, D’Almeida V, Kyosen SO, Takata ET, Delgado AG, Gonçalves AM, et al. Guidelines to diagnosis and monitoring of Fabry disease and review of treatment experiences. J Pediatr. 2009;155(4 Suppl):S19–31.CrossRefPubMedGoogle Scholar
  57. 57.
    Chamoles NA, Blanco M, Gaggioli D. Fabry disease: enzymatic diagnosis in dried blood spots on filter paper. Clin Chim Acta. 2001;308(1–2):195–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Caudron E, Germain DP, Prognon P. Fabry disease: enzymatic screening using dried blood spots on filter paper. Rev Med Interne. 2010;31 Suppl 2:S263–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Mehta A, Beck M, Eyskens F, Feliciani C, Kantola I, Ramaswami U, et al. Fabry disease: a review of current management strategies. QJM. 2010;103(9):641–59.CrossRefPubMedGoogle Scholar
  60. 60.
    Yang CC, Lai LW, Whitehair O, Hwu WL, Chiang SC, Lien YH. Two novel mutations in the alpha-galactosidase A gene in Chinese patients with Fabry disease. Clin Genet. 2003;63:205–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Desnick RJ, Bernstein HS, Astrin KH, Bishop DF. Fabry disease: molecular diagnosis of hemizygotes and heterozygotes. Enzyme. 1987;38:54–64.PubMedGoogle Scholar
  62. 62.
    Schirinzi A, Centra M, Prattichizzo C, Gigante M, De Fabritiis M, Giancaspro V, et al. Identification of GLA gene deletions in Fabry patients by Multiplex Ligation-dependent Probe Amplification (MLPA). Mol Genet Metab. 2008;94:382–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Aerts JM, Kallemeijn WW, Wegdam W, Joao Ferraz M, van Breemen MJ, Dekker N, et al. Biomarkers in the diagnosis of lysosomal storage disorders: proteins, lipids, and inhibodies. J Inherit Metab Dis. 2011;34(3):605–19.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    DeGraba T, Azhar S, Dignat-George F, Brown E, Boutière B, Altarescu G, et al. Profile of endothelial and leukocyte activation in Fabry patients. Ann Neurol. 2000;47(2):229–33.CrossRefPubMedGoogle Scholar
  65. 65.
    Vedder AC, Biró E, Aerts JM, Nieuwland R, Sturk G, Hollak CE. Plasma markers of coagulation and endothelial activation in Fabry disease: impact of renal impairment. Nephrol Dial Transplant. 2009;24(10):3074–81.CrossRefPubMedGoogle Scholar
  66. 66.
    Moore DF, Krokhin OV, Beavis RC, Ries M, Robinson C, Goldin E, et al. Proteomics of specific treatment-related alterations in Fabry disease: a strategy to identify biological abnormalities. Proc Natl Acad Sci U S A. 2007;104(8):2873–8.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rombach SM, van den Bogaard B, de Groot E, Groener JE, Poorthuis BJ, Linthorst GE, et al. Vascular aspects of Fabry disease in relation to clinical manifestations and elevations in plasma globotriaosylsphingosine. Hypertension. 2012;60(4):998–1005.CrossRefPubMedGoogle Scholar
  68. 68.
    Auray-Blais C, Blais CM, Ramaswami U, Boutin M, Germain DP, Dyack S, et al. Urinary biomarker investigation in children with Fabry disease using tandem mass spectrometry. Clin Chim Acta. 2015;438:195–204.CrossRefPubMedGoogle Scholar
  69. 69.
    Vedder AC, Linthorst GE, van Breemen MJ, Groener JE, Bemelman FJ, Strijland A, et al. The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis. 2007;30(1):68–78.CrossRefPubMedGoogle Scholar
  70. 70.
    Sueoka H, Ichihara J, Tsukimura T, Togawa T, Sakuraba H. Nano-LC-MS/MS for quantification of Lyso-Gb3 and its analogues reveals a useful biomarker for Fabry disease. PLoS One. 2015;10(5):e0127048.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Togawa T, Kodama T, Suzuki T, Sugawara K, Tsukimura T, Ohashi T, et al. Plasma globotriaosylsphingosine as a biomarker of Fabry disease. Mol Genet Metab. 2010;100(3):257–61.CrossRefPubMedGoogle Scholar
  72. 72.
    Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta. 2010;1802(9):741–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Kampmann C, Linhart A, Devereux RB, Schiffmann R. Effect of agalsidase alfa replacement therapy on Fabry disease-related hypertrophic cardiomyopathy: a 12- to 36-month, retrospective, blinded echocardiographic pooled analysis. Clin Ther. 2009;31(9):1966–76.CrossRefPubMedGoogle Scholar
  74. 74.
    West M, Nicholls K, Mehta A, Clarke JT, Steiner R, Beck M, et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol. 2009;20(5):1132–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Linthorst GE, Germain DP, Hollak CE, Hughes D, Rolfs A, Wanner C, et al. European Medicines Agency Expert opinion on temporary treatment recommendations for Fabry disease during the shortage of enzyme replacement therapy (ERT). Mol Genet Metab. 2011;102(1):99–102.CrossRefPubMedGoogle Scholar
  76. 76.
    Schiffmann R, Hauer P, Freeman B, Ries M, Scott LJ, Polydefkis M, et al. Enzyme replacement therapy and intraepidermal innervation density in Fabry disease. Muscle Nerve. 2006;34(1):53–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. Safety and efficacy of recombinant human alpha-galactosidase A—replacement therapy in Fabry’s disease. N Engl J Med. 2001;345(1):9–16.CrossRefPubMedGoogle Scholar
  78. 78.
    Schaefer RM, Tylki-Szymańska A, Hilz MJ. Enzyme replacement therapy for Fabry disease: a systematic review of available evidence. Drugs. 2009;69(16):2179–205.CrossRefPubMedGoogle Scholar
  79. 79.
    Sakurab H, Murata-Ohsawa M, Kawashima I, Tajima Y, Kotani M, Ohshima T, et al. Comparison of the effects of agalsidase alfa and agalsidase beta on cultured human Fabry fibroblasts and Fabry mice. J Hum Genet. 2006;51:180–8.CrossRefGoogle Scholar
  80. 80.
    Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, et al. High incidence of later-onset fabry disease revealed by newborn screening. Am J Hum Genet. 2006;79(1):31–40.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.••
    Biegstraaten M, Arngrímsson R, Barbey F, Boks L, Cecchi F, Deegan PB, Feldt-Rasmussen U, Geberhiwot T, Germain DP, Hendriksz C, Hughes DA, Kantola I, Karabul N, Lavery C, Linthorst GE, Mehta A, van de Mheen E, Oliveira JP, Parini R, Ramaswami U, Rudnicki M, Serra A, Sommer C, Sunder-Plassmann G, Svarstad E, Sweeb A, Terryn W, Tylki-Szymanska A, Tøndel C, Vujkovac B, Weidemann F, Wijburg FA, Woolfson P, Hollak CE. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis. 2015;10:36. Recommendations for initiation and cessation of ERT in FD patients. The recommendations can be used as a benchmark for initiation and cessation of ERT, although final decisions should be made on an individual basis.Google Scholar
  82. 82.
    Politei JM. Treatment with agalsidase beta during pregnancy in Fabry disease. J Obstet Gynaecol Res. 2010;36(2):428–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Whitley CB, Tsai MY, Heger JJ, Prystowsky EN, Zipes DP. Amiodarone phenocopy of Fabry’s keratopathy. JAMA. 1983;249(16):2177–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Linthorst GE, Hollak CE, Donker-Koopman WE, Strijland A, Aerts JM. Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase alpha and beta. Kidney Int. 2004;66(4):1589–95.CrossRefPubMedGoogle Scholar
  85. 85.
    Wilcox WR, Banikazemi M, Guffon N, Waldek S, Lee P, Linthorst GE, et al. Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet. 2004;75(1):65–74.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Eng CM, Germain DP, Banikazemi M, Warnock DG, Wanner C, Hopkin RJ, et al. Fabry disease: guidelines for the evaluation and management of multi-organ system involvement. Genet Med. 2006;8(9):539–48.CrossRefPubMedGoogle Scholar
  87. 87.
    Rombach SM, Smid BE, Bouwman MG, Linthorst GE, Dijkgraaf MG, Hollak CE. Long term enzyme replacement therapy for Fabry disease: effectiveness on kidney, heart and brain. Orphanet J Rare Dis. 2013;8:47.Google Scholar
  88. 88.
    Politei JM. Can we use statins to prevent stroke in Fabry disease? J Inherit Metab Dis. 2009;32(4):481–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Tajima Y, Kawashima I, Tsukimura T, Sugawara K, Kuroda M, Suzuki T, et al. Use of a modified alpha-N-acetylgalactosaminidase in the development of enzyme replacement therapy for Fabry disease. Am J Hum Genet. 2009;85(5):569–80.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Yam GH, Bosshard N, Zuber C, Steinmann B, Roth J. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol. 2006;290(4):C1076–82.CrossRefPubMedGoogle Scholar
  91. 91.
    Yam GH, Zuber C, Roth J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J. 2005;19(1):12–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Fan JQ, Ishii S. Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme inhibitors. FEBS J. 2007;274(19):4962–71.CrossRefPubMedGoogle Scholar
  93. 93.
    Germain DP, Fan JQ. Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: in vitro and preclinical studies. Int J Clin Pharmacol Ther. 2009;47 Suppl 1:S111–7.PubMedGoogle Scholar
  94. 94.•
    El-Abassi R, Singhal D, England JD. Fabry’s disease. J Neurol Sci. 2014;344(1–2):5–19. Complete review on clinical, pathogenetic and therapeutic aspects of FD.CrossRefPubMedGoogle Scholar
  95. 95.
    Jung SC, Han IP, Limaye A, Xu R, Gelderman MP, Zerfas P, et al. Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci U S A. 2001;98(5):2676–81.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Takahashi H, Hirai Y, Migita M, Seino Y, Fukuda Y, Sakuraba H, et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proc Natl Acad Sci U S A. 2002;99(21):13777–82.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Shen JS, Meng XL, Wight-Carter M, Day TS, Goetsch SC, Forni S, et al. Blocking hyperactive androgen receptor signaling ameliorates cardiac and renal hypertrophy in Fabry mice. Hum Mol Genet. 2015;24:3181–91.CrossRefPubMedGoogle Scholar
  98. 98.
    Gold KF, Pastores GM, Botteman MF, Yeh JM, Sweeney S, Aliski W, et al. Quality of life of patients with Fabry disease. Qual Life Res. 2002;11:317–27.CrossRefPubMedGoogle Scholar
  99. 99.••
    Rombach SM, Smid BE, Linthorst GE, Dijkgraaf MG, Hollak CE. Natural course of Fabry disease and the effectiveness of enzyme replacement therapy: a systematic review and meta-analysis: effectiveness of ERT in different disease stages. J Inherit Metab Dis. 2014;37(3):341–52. Effectiveness of ERT in different disease stages. ERT is effective in reducing left ventricular mass, but has a limited effect on renal function. Improved treatment options are needed for Fabry disease.Google Scholar
  100. 100.
    Salvati A, Burlina AP, Borsini W. Nervous system and Fabry disease, from symptoms to diagnosis: damage evaluation and follow-up in adult patients, enzyme replacement, and support therapy. Neurol Sci. 2010;31:299–306.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Michela Ranieri
    • 1
  • Gloria Bedini
    • 2
  • Eugenio Agostino Parati
    • 1
  • Anna Bersano
    • 1
  1. 1.Cerebrovascular UnitIRCCS Foundation Neurological Institute “C. Besta”MilanItaly
  2. 2.Laboratory of Cellular Neurobiology, Cerebrovascular UnitIRCCS Foundation Neurological Institute “C. Besta”MilanItaly

Personalised recommendations