Imaging Selection for Reperfusion Therapy in Acute Ischemic Stroke

Cerebrovascular Disorders (H Adams, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cerebrovascular Disorders

Opinion statement

Neuroimaging is essential in the evaluation of the acute stroke patient. Computed tomography (CT) or magnetic resonance imaging (MRI) should be used to confirm the diagnosis of acute stroke, exclude stroke mimics, and triage patients for intravenous tissue plasminogen activator and endovascular revascularization therapies. Advanced neuroimaging techniques, including CT-angiography, MR-angiography, CT-perfusion, and MR-perfusion should be used to further inform acute stroke treatment decisions. Patients considered for endovascular stroke therapy should have (1) a vascular occlusion that can be reached by an endovascular approach; (2) a small area of core cerebral infarction; and (3) viable tissue at risk of infarction if prompt revascularization is not achieved (penumbra).

Keywords

Neuroimaging Reperfusion therapy Acute ischemic stroke Tissue plasminogen activator tPA Endovascular revascularization CT MRI Diagnosis Treatment 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Jeremy J. Heit and Max Wintermark declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.CrossRefPubMedGoogle Scholar
  2. 2.
    Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333(24):1581‒7.Google Scholar
  4. 4.•
    Nogueira RG, Lutsep HL, Gupta R, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet. 2012;380(9849):1231–40. This study showed superior endovascular revascularization with the Trevo stentreiver device compared with the older generation MERCI device. Recanalization of proximal vessel occlusions was successful in 86 % of patients treated with the Trevo device.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.CrossRefPubMedGoogle Scholar
  6. 6.
    Saver JL, Jahan R, Levy EI, et al. SOLITAIRE with the intention for thrombectomy (SWIFT) trial: design of a randomized, controlled, multicenter study comparing the SOLITAIRE Flow Restoration device and the MERCI Retriever in acute ischaemic stroke. Int J Stroke. 2014;9(5):658–68.CrossRefPubMedGoogle Scholar
  7. 7.•
    Saver JL, Jahan R, Levy EI, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, noninferiority trial. Lancet. 2012;380(9849):1241–9. Endovascular revascularization using the Solitaire stentreiver was successful in 61 % of patients with a proximal vessel occlusion, which was superior to the older generation MERCI device.CrossRefPubMedGoogle Scholar
  8. 8.
    del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M. PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in Acute Cerebral Thromboembolism. Stroke. 1998;29(1):4–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Smith WS, Sung G, Saver J, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke. 2008;39(4):1205–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Penumbra Pivotal Stroke Trial I. The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009;40(8):2761–8.CrossRefGoogle Scholar
  11. 11.
    Jauch EC, Saver JL, Adams Jr HP, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.CrossRefPubMedGoogle Scholar
  12. 12.
    Nakano S, Iseda T, Kawano H, Yoneyama T, Ikeda T, Wakisaka S. Correlation of early CT signs in the deep middle cerebral artery territories with angiographically confirmed site of arterial occlusion. AJNR Am J Neuroradiol. 2001;22(4):654–9.PubMedGoogle Scholar
  13. 13.
    von Kummer R, Meyding-Lamade U, Forsting M, et al. Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR Am J Neuroradiol. 1994;15(1):9–15. discussion 6‒8.Google Scholar
  14. 14.
    Fiebach JB, Schellinger PD, Jansen O, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke. 2002;33(9):2206–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Gonzalez RG, Schaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210(1):155–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Barber PA, Darby DG, Desmond PM, et al. Identification of major ischemic change. Diffusion-weighted imaging versus computed tomography. Stroke. 1999;30(10):2059–65.CrossRefPubMedGoogle Scholar
  17. 17.
    Libman RB, Wirkowski E, Alvir J, Rao TH. Conditions that mimic stroke in the emergency department. Implications for acute stroke trials. Arch Neurol. 1995;52(11):1119–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Keedy A, Soares B, Wintermark M. A pictorial essay of brain perfusion-CT: not every abnormality is a stroke! J Neuroimaging. 2012;22(4):e20–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Chernyshev OY, Martin-Schild S, Albright KC, et al. Safety of tPA in stroke mimics and neuroimaging-negative cerebral ischemia. Neurology. 2010;74(17):1340–5.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Paxton R, Ambrose J. The EMI scanner. A brief review of the first 650 patients. Br J Radiol. 1974;47(561):530–65.CrossRefPubMedGoogle Scholar
  21. 21.
    Jacobs L, Kinkel WR, Heffner Jr RR. Autopsy correlations of computerized tomography: experience with 6000 CT scans. Neurology. 1976;26(12):1111–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Fiebach JB, Schellinger PD, Gass A, et al. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke; a journal of cerebral circulation. 2004;35(2):502–6.Google Scholar
  23. 23.
    Kidwell CS, Chalela JA, Saver JL, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004;292(15):1823–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Verma RK, Kottke R, Andereggen L, et al. Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT. Eur J Radiol. 2013;82(9):1539–45.CrossRefPubMedGoogle Scholar
  25. 25.
    Smith WS, Sung G, Starkman S, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke. 2005;36(7):1432–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Menon BK, Puetz V, Kochar P, Demchuk AM. ASPECTS and other neuroimaging scores in the triage and prediction of outcome in acute stroke patients. Neuroimaging Clin N Am. 2011;21(2):407–23. xii.CrossRefPubMedGoogle Scholar
  27. 27.
    Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355(9216):1670–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22(8):1534–42.PubMedGoogle Scholar
  29. 29.
    Coutts SB, Demchuk AM, Barber PA, et al. Interobserver variation of ASPECTS in real time. Stroke. 2004;35(5):e103–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Goyal M, Menon BK, Coutts SB, et al. Effect of baseline CT scan appearance and time to recanalization on clinical outcomes in endovascular thrombectomy of acute ischemic strokes. Stroke. 2011;42(1):93–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Hill MD, Demchuk AM, Goyal M, et al. Alberta Stroke Program early computed tomography score to select patients for endovascular treatment: Interventional Management of Stroke (IMS)-III Trial. Stroke. 2014;45(2):444–9.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Smith WS, Tsao JW, Billings ME, et al. Prognostic significance of angiographically confirmed large vessel intracranial occlusion in patients presenting with acute brain ischemia. Neurocrit Care. 2006;4(1):14–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Wolpert SM, Bruckmann H, Greenlee R, Wechsler L, Pessin MS, del Zoppo GJ. Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. AJNR Am J Neuroradiol. 1993;14(1):3–13.PubMedGoogle Scholar
  34. 34.•
    Broderick JP, Palesch YY, Demchuk AM, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368(10):893–903. This randomized control trial was stopped early when an interim analysis showed no difference between stroke patients treated with intravenous t-PA compared with those treated with intravenous t-PA and endovascular stroke therapy. However, the trial has been criticized for the large number of patients traiged with only a noncontrast head CT and the paucity of patients treated with the superior stentreiver mechanical thrombecotmy devices (1.7 %) in the endovascular therapy arm.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Ciccone A, Valvassori L, Nichelatti M, et al. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368(25):2433–4.PubMedGoogle Scholar
  36. 36.
    Morais LT, Leslie-Mazwi TM, Lev MH, Albers GW, Yoo AJ. Imaging-based selection for intra-arterial stroke therapies. J Neurointervent Surg. 2013;5((Suppl) 1):i13–20.CrossRefGoogle Scholar
  37. 37.
    Kirchhof K, Welzel T, Mecke C, Zoubaa S, Sartor K. Differentiation of white, mixed, and red thrombi: value of CT in estimation of the prognosis of thrombolysis phantom study. Radiology. 2003;228(1):126–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Gacs G, Fox AJ, Barnett HJ, Vinuela F. CT visualization of intracranial arterial thromboembolism. Stroke. 1983;14(5):756–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Ozdemir O, Leung A, Bussiere M, Hachinski V, Pelz D. Hyperdense internal carotid artery sign: a CT sign of acute ischemia. Stroke. 2008;39(7):2011–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Leys D, Pruvo JP, Godefroy O, Rondepierre P, Leclerc X. Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke. 1992;23(3):317–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Flacke S, Urbach H, Keller E, et al. Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology. 2000;215(2):476–82.CrossRefPubMedGoogle Scholar
  42. 42.
    Rovira A, Orellana P, Alvarez-Sabin J, et al. Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology. 2004;232(2):466–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Bash S, Villablanca JP, Jahan R, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol. 2005;26(5):1012–21.PubMedGoogle Scholar
  44. 44.
    Graf J, Skutta B, Kuhn FP, Ferbert A. Computed tomographic angiography findings in 103 patients following vascular events in the posterior circulation: potential and clinical relevance. J Neurol. 2000;247(10):760–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Lev MH, Farkas J, Rodriguez VR, et al. CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr. 2001;25(4):520–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Hirai T, Korogi Y, Ono K, et al. Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNR Am J Neuroradiol. 2002;23(1):93–101.PubMedGoogle Scholar
  47. 47.
    Tomanek AI, Coutts SB, Demchuk AM, et al. MR angiography compared to conventional selective angiography in acute stroke. Can J Neurol Sci (J Can Sci Neurol). 2006;33(1):58–62.CrossRefGoogle Scholar
  48. 48.
    Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60(5):508–17.CrossRefPubMedGoogle Scholar
  49. 49.
    Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309.Google Scholar
  50. 50.
    Kidwell CS, Wintermark M, De Silva DA, et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke. Stroke. 2013;44(1):73–9.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.••
    Lansberg MG, Straka M, Kemp S, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol. 2012;11(10):860–7. This prospective study demonstrated that neuroimaging with MRI, MRA, and MR Perfusion may be used to predict clinical outcome following endovascular revascularization. This study validates the use of perfusion imaging in the triage of the acute stroke patient.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Konstas AA, Wintermark M, Lev MH. CT perfusion imaging in acute stroke. Neuroimaging Clin N Am. 2011;21(2):215–38. ix.CrossRefPubMedGoogle Scholar
  53. 53.
    Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–99.CrossRefPubMedGoogle Scholar
  54. 54.
    Parsons M, Spratt N, Bivard A, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366(12):1099–107.CrossRefPubMedGoogle Scholar
  55. 55.
    Fang MC, Cutler DM, Rosen AB. Trends in thrombolytic use for ischemic stroke in the United States. J Hosp Med. 2010;5(7):406–9.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Hassan AE, Chaudhry SA, Grigoryan M, Tekle WG, Qureshi AI. National trends in utilization and outcomes of endovascular treatment of acute ischemic stroke patients in the mechanical thrombectomy era. Stroke. 2012;43(11):3012–7.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Smith WS, Lev MH, English JD, et al. Significance of large vessel intracranial occlusion causing acute ischemic stroke and TIA. Stroke. 2009;40(12):3834–40.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Gonzalez RG, Copen WA, Schaefer PW, et al. The Massachusetts General Hospital acute stroke imaging algorithm: an experience and evidence based approach. J Neurointervent Surg. 2013;5 Suppl 1:i7–i12.CrossRefGoogle Scholar
  59. 59.
    Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, Gonzalez RG. MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke. 2009;40(6):2046–54.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Wintermark M, Flanders AE, Velthuis B, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37(4):979–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Fahmi F, Marquering HA, Streekstra GJ, et al. Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages. AJNR Am J Neuroradiol. 2012;33(11):2074–80.CrossRefPubMedGoogle Scholar
  62. 62.
    Kamalian S, Kamalian S, Maas MB, et al. CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke. 2011;42(7):1923–8.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Wintermark M, Albers GW, Alexandrov AV, et al. Acute stroke imaging research roadmap. AJNR Am J Neuroradiol. 2008;29(5):e23–30.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Thomalla G, Rossbach P, Rosenkranz M, et al. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol. 2009;65(6):724–32.Google Scholar
  65. 65.
    Thomalla G, Cheng B, Ebinger M, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–86.Google Scholar
  66. 66.
    Aoki J, Kimura K, Iguchi Y, Shibazaki K, Sakai K, Iwanaga T. FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci. 2010;293(1‒2):39–44.CrossRefPubMedGoogle Scholar
  67. 67.
    Chalela JA, Kidwell CS, Nentwich LM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369(9558):293–8.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Kang DW, Chalela JA, Dunn W, Warach S, Investigators NI-SSC. MRI screening before standard tissue plasminogen activator therapy is feasible and safe. Stroke. 2005;36(9):1939–43.CrossRefPubMedGoogle Scholar
  69. 69.
    Fiebach J, Brandt T, Knauth M, Jansen O. [MRI with fat suppression in the visualization of wall hematoma in spontaneous dissection of the internal carotid artery]. RoFo Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 1999;171(4):290–3.CrossRefPubMedGoogle Scholar
  70. 70.
    Schellinger PD, Jansen O, Fiebach JB, Hacke W, Sartor K. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke. 1999;30(4):765–8.CrossRefPubMedGoogle Scholar
  71. 71.•
    Kidwell CS, Jahan R, Gornbein J, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368(10):914–23. This phase IIb trial used MRI and MR perfusion to select stroke patients with proximal vessel occlusions for endovascular revascularization therapy. The study found no difference in clinical outcomes after endovascular therapy among patients with a favorable diffusion-perfusion mismatch and no benefit of endovascular therapy compared with medical management. This study has been criticized for the use of older generation devices and the large number of patients treated after 6 hours in the endovascular treatment arm.Google Scholar
  72. 72.
    Turk AS, Magarick JA, Frei D, et al. CT perfusion-guided patient selection for endovascular recanalization in acute ischemic stroke: a multicenter study. J Neurointervent Surg. 2013;5(6):523–7.CrossRefGoogle Scholar
  73. 73.
    Puig J, Pedraza S, Demchuk A, et al. Quantification of thrombus hounsfield units on noncontrast CT predicts stroke subtype and early recanalization after intravenous recombinant tissue plasminogen activator. AJNR Am J Neuroradiol. 2012;33(1):90–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42(6):1775–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Souza LC, Yoo AJ, Chaudhry ZA, et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. AJNR Am J Neuroradiol. 2012;33(7):1331–6.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Bang OY, Saver JL, Kim SJ, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42(3):693–9.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    American College of Emergency P, Society for Cardiovascular A, Interventions et al. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(4):e78–e140.CrossRefGoogle Scholar
  78. 78.
    Struffert T, Deuerling-Zheng Y, Engelhorn T, et al. Feasibility of cerebral blood volume mapping by flat panel detector CT in the angiography suite: first experience in patients with acute middle cerebral artery occlusions. AJNR Am J Neuroradiol. 2012;33(4):618–25.CrossRefPubMedGoogle Scholar
  79. 79.
    Mordasini P, El-Koussy M, Brekenfeld C, et al. Applicability of tableside flat panel detector CT parenchymal cerebral blood volume measurement in neurovascular interventions: preliminary clinical experience. AJNR Am J Neuroradiol. 2012;33(1):154–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Fiorella D, Turk A, Chaudry I, et al. A prospective, multicenter pilot study investigating the utility of flat detector derived parenchymal blood volume maps to estimate cerebral blood volume in stroke patients. J Neurointervent Surg. 2014;6(6):451–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Radiology, Neuroradiology DivisionStanford UniversityStanfordUSA

Personalised recommendations