Advertisement

New Targets for Migraine Therapy

  • Amy R. Tso
  • Peter J. Goadsby
Headache (JR Couch, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Headache

Opinion statement

The shift in our understanding of migraine as a vascular disorder to a brain disorder has opened new avenues for the development of novel therapeutics with neural targets. The advent of 5-HT1B/1D receptor agonists, the triptans, in the 1990s was a crucial step in the modern evolution of treatment. The use of triptans, like their predecessors, is limited by their vasoconstrictor effects, and new development has been slowed by poor academic research funding to identify new targets. The development of agents without vascular effects, such as calcitonin gene-related peptide receptor antagonists and selective serotonin 5-HT1F receptor agonists, will bring more effective treatments to a population currently without migraine-specific options. In addition, advances in understanding migraine pathophysiology have identified new potential pharmacologic targets such as acid-sensing ion channels, glutamate and orexin receptors, nitric oxide synthase (NOS), and transient receptor potential (TRP) channels. Although previous attempts to block subtypes of glutamate receptors, NOS, and TRP channels have had mixed outcomes, new molecules for the same targets are currently under investigation. Finally, an entirely new approach to migraine treatment with noninvasive neuromodulation via transcutaneous neurostimulation or transcranial magnetic stimulation is just beginning. Hopefully in the coming years we will see a new era of migraine therapy, with multiple classes of better-tolerated, more effective agents targeting diverse yet specific migraine mechanisms.

Keywords

Acute Headache Migraine Preventive Review Treatment 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Amy R. Tso reports no conflict of interest.

Peter J. Goadsby reports grants and personal fees from Allergan, eNeura, and Amgen; and personal fees from Autonomic Technologies, Inc., BristolMyerSquibb, AlderBio, Pfizer, Zogenix, Nevrocorp, Impax, DrReddy, Zosano, Colucid, Eli-Lilly, Medtronic, Avanir, Gore, Ethicon, Heptares, Nupathe, Ajinomoto, and Teva, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96. doi: 10.1016/S0140-6736(12)61729-2.PubMedCrossRefGoogle Scholar
  2. 2.
    Gowers W. A manual of diseases of the nervous system. 3rd ed. Philadelphia: P. Blakiston, Son & Co; 1899.Google Scholar
  3. 3.
    Liveing E. On megrim, sick-headache, and some allied disorders. A contribution to the pathology of nerve-storms. London: Arts & Boeve Nijmegen; 1873.Google Scholar
  4. 4.
    Ray BS, Wolff HG. Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch Surg. 1940;41:813–56.CrossRefGoogle Scholar
  5. 5.
    Graham JR, Wolff HG. Mechanism of migraine headache and action of ergotamine tartrate. Arch. Neurol. Psychiatr. 1938:737-63.Google Scholar
  6. 6.
    Feniuk W, Humphrey PP, Perren MJ, et al. Rationale for the use of 5-HT1-like agonists in the treatment of migraine. J Neurol. 1991;238 Suppl 1:S57–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol. 1981;9(4):344–52. doi: 10.1002/ana.410090406.PubMedCrossRefGoogle Scholar
  8. 8.
    Olesen J, Friberg L, Olsen TS, et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol. 1990;28(6):791–8. doi: 10.1002/ana.410280610.PubMedCrossRefGoogle Scholar
  9. 9.
    Amin FM, Asghar MS, Hougaard A, et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 2013;12(5):454–61. doi: 10.1016/S1474-4422(13)70067-X.PubMedCrossRefGoogle Scholar
  10. 10.
    Afridi SK, Matharu MS, Lee L, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128(Pt 4):932–9.PubMedCrossRefGoogle Scholar
  11. 11.•
    Maniyar FH, Sprenger T, Monteith T, et al. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014;137(Pt 1):232–41. doi: 10.1093/brain/awt320. PET imaging study showing that changes in brain activity begin in the premonitory phase well before the onset of pain.PubMedCrossRefGoogle Scholar
  12. 12.
    Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84. doi: 10.1038/nrn3057.PubMedCrossRefGoogle Scholar
  13. 13.
    Aurora SK, Dodick DW, Turkel CC, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia Int J Headache. 2010;30(7):793–803. doi: 10.1177/0333102410364676.CrossRefGoogle Scholar
  14. 14.
    Diener HC, Dodick DW, Aurora SK, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia Int J Headache. 2010;30(7):804–14. doi: 10.1177/0333102410364677.CrossRefGoogle Scholar
  15. 15.
    Ferrari MD, Goadsby PJ, Roon KI, et al. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia Int J Headache. 2002;22(8):633–58.CrossRefGoogle Scholar
  16. 16.
    Goadsby PJ, Sprenger T. Current practice and future directions in the prevention and acute management of migraine. Lancet Neurol. 2010;9(3):285–98. doi: 10.1016/S1474-4422(10)70005-3.PubMedCrossRefGoogle Scholar
  17. 17.
    Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–6. doi: 10.1002/ana.410230214.PubMedCrossRefGoogle Scholar
  18. 18.
    Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–7. doi: 10.1002/ana.410280213.PubMedCrossRefGoogle Scholar
  19. 19.
    Cernuda-Morollon E, Larrosa D, Ramon C, et al. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology. 2013;81(14):1191–6. doi: 10.1212/WNL.0b013e3182a6cb72.PubMedCrossRefGoogle Scholar
  20. 20.
    Lassen LH, Haderslev PA, Jacobsen VB, et al. CGRP may play a causative role in migraine. Cephalalgia Int J Headache. 2002;22(1):54–61.CrossRefGoogle Scholar
  21. 21.
    Hansen JM, Hauge AW, Olesen J, et al. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia Int J Headache. 2010;30(10):1179–86. doi: 10.1177/0333102410368444.CrossRefGoogle Scholar
  22. 22.
    Ho TW, Ferrari MD, Dodick DW, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23. doi: 10.1016/S0140-6736(08)61626-8.PubMedCrossRefGoogle Scholar
  23. 23.
    Connor KM, Shapiro RE, Diener HC, et al. Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology. 2009;73(12):970–7. doi: 10.1212/WNL.0b013e3181b87942.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hewitt DJ, Aurora SK, Dodick DW, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia Int J Headache. 2011;31(6):712–22. doi: 10.1177/0333102411398399.CrossRefGoogle Scholar
  25. 25.
    Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10. doi: 10.1056/NEJMoa030505.PubMedCrossRefGoogle Scholar
  26. 26.••
    Marcus R, Goadsby PJ, Dodick D, et al. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia Int J Headache. 2014;34(2):114–25. doi: 10.1177/0333102413500727. Recent trial showing a CGRP antagonist has efficacy comparable to sumatriptan for acute treatment of migraine.CrossRefGoogle Scholar
  27. 27.
    Diener HC, Barbanti P, Dahlof C, et al. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia Int J Headache. 2011;31(5):573–84. doi: 10.1177/0333102410388435.CrossRefGoogle Scholar
  28. 28.
    Ho TW, Connor KM, Zhang Y, et al. Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology. 2014. doi: 10.1212/WNL.0000000000000771.
  29. 29.
    Leone M, Grazzi L, La Mantia L, et al. Flunarizine in migraine: a minireview. Headache. 1991;31(6):388–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Soyka D, Taneri Z, Oestreich W, et al. Flunarizine i.v. in the acute treatment of the migraine attack. A double-blind placebo-controlled study. Cephalalgia Int J Headache. 1988;8 Suppl 8:35–40.Google Scholar
  31. 31.
    Goadsby PJ. Migraine: emerging treatment options for preventive and acute attack therapy. Expert Opin Emerg Drugs. 2006;11(3):419–27. doi: 10.1517/14728214.11.3.419.PubMedCrossRefGoogle Scholar
  32. 32.
    Goadsby PJ, Dodick D, Silberstein S, et al. Randomized, double-blind, placebo-controlled trial of ALD403, an anti-CGRP peptide antibody in the prevention of frequent episodic migraine. Headache. 2014;54:in press.Google Scholar
  33. 33.
    de Hoon J, Montieth D, Vermeersch S, et al. Safety, pharmacokinetics, and pharmacodynamics of LY2951742: a monoclonal antibody targeting CGRP. Cephalalgia Int J Headache. 2013;33(8 suppl):247–8.Google Scholar
  34. 34.
    Dodick D, Goadsby PJ, Spierings EL, et al. CGRP monoclonal antibody LY2951742 for the prevention of migraine: a phase 2, randomized, double-blind, placebo-controlled study. Headache. 2014;54:in press.Google Scholar
  35. 35.
    Bigal ME, Escandon R, Bronson M, et al. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: results of the phase 1 program. Cephalalgia Int J Headache. 2013;34(7):483–92. doi: 10.1177/0333102413517775.CrossRefGoogle Scholar
  36. 36.
    Headache Classification Committee of the International Headache S. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia Int J Headache. 2013;33(9):629–808. doi: 10.1177/0333102413485658.CrossRefGoogle Scholar
  37. 37.
    Shi L, Rao S, King C, et al. AMG 334, the first potent and selective human monoclonal antibody antagonist against the CGRP receptor. Headache. 2014; 54:in press.Google Scholar
  38. 38.
    Goldstein DJ, Roon KI, Offen WW, et al. Selective seratonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet. 2001;358(9289):1230–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Farkkila M, Diener HC, Geraud G, et al. Efficacy and tolerability of lasmiditan, an oral 5-HT(1F) receptor agonist, for the acute treatment of migraine: a phase 2 randomised, placebo-controlled, parallel-group, dose-ranging study. Lancet Neurol. 2012;11(5):405–13. doi: 10.1016/S1474-4422(12)70047-9.PubMedCrossRefGoogle Scholar
  40. 40.
    Ziemann AE, Schnizler MK, Albert GW, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci. 2008;11(7):816–22. doi: 10.1038/nn.2132.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Friese MA, Craner MJ, Etzensperger R, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2007;13(12):1483–9. doi: 10.1038/nm1668.PubMedCrossRefGoogle Scholar
  42. 42.
    Holland PR, Akerman S, Andreou AP, et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;72(4):559–63. doi: 10.1002/ana.23653.PubMedCrossRefGoogle Scholar
  43. 43.
    Diochot S, Baron A, Salinas M, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 2012;490(7421):552–5. doi: 10.1038/nature11494.PubMedCrossRefGoogle Scholar
  44. 44.
    Ma QP. Co-localization of 5-HT(1B/1D/1F) receptors and glutamate in trigeminal ganglia in rats. Neuroreport. 2001;12(8):1589–91.PubMedCrossRefGoogle Scholar
  45. 45.
    Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009;18(6):789–803. doi: 10.1517/13543780902913792.PubMedCrossRefGoogle Scholar
  46. 46.
    Ramadan NM. The link between glutamate and migraine. CNS Spectr. 2003;8(6):446–9.PubMedGoogle Scholar
  47. 47.
    Sang CN, Ramadan NM, Wallihan RG, et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia Int J Headache. 2004;24(7):596–602. doi: 10.1111/j.1468-2982.2004.00723.x.CrossRefGoogle Scholar
  48. 48.
    Marin JC, Goadsby PJ. Glutamatergic fine tuning with ADX-10059: a novel therapeutic approach for migraine? Expert Opin Investig Drugs. 2010;19(4):555–61. doi: 10.1517/13543781003691832.PubMedCrossRefGoogle Scholar
  49. 49.
    Gomez-Mancilla B, Brand R, Jurgens TP, et al. Randomized, multicenter trial to assess the efficacy, safety and tolerability of a single dose of a novel AMPA receptor antagonist BGG492 for the treatment of acute migraine attacks. Cephalalgia Int J Headache. 2014;34(2):103–13. doi: 10.1177/0333102413499648.CrossRefGoogle Scholar
  50. 50.
    Afridi SK, Giffin NJ, Kaube H, et al. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology. 2013;80(7):642–7. doi: 10.1212/WNL.0b013e3182824e66.PubMedCrossRefGoogle Scholar
  51. 51.
    Wei EP, Moskowitz MA, Boccalini P, et al. Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res. 1992;70(6):1313–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Afridi SK, Kaube H, Goadsby PJ. Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain. 2004;110(3):675–80. doi: 10.1016/j.pain.2004.05.007.PubMedCrossRefGoogle Scholar
  53. 53.
    Palmer J, Guillard F, Laurijssens B, et al. A randomised, single-blind, placebo-controlled, adaptive clinical trial of GW274150, a selective iNOS inhibitor, in the treatment of acute migraine. Cephalalgia Int J Headache. 2009;29:124.Google Scholar
  54. 54.
    Hoivik HO, Laurijssens BE, Harnisch LO, et al. Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia Int J Headache. 2010;30(12):1458–67. doi: 10.1177/0333102410370875.CrossRefGoogle Scholar
  55. 55.
    Medve R, Andrews J. Effects of fixed dose combination of nNOS inhibition and 5HT agonism on progression of migraine with and without aura. Cephalalgia Int J Headache. 2009;29:126.Google Scholar
  56. 56.
    Hou M, Uddman R, Tajti J, et al. Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett. 2002;330(3):223–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112(6):819–29.PubMedCrossRefGoogle Scholar
  58. 58.
    Kunkler PE, Ballard CJ, Oxford GS, et al. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain. 2011;152(1):38–44. doi: 10.1016/j.pain.2010.08.021.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Anttila V, Stefansson H, Kallela M, et al. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet. 2010;42(10):869–73.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.••
    Anttila V, Winsvold BS, Gormley P, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;45(8):912–7. doi: 10.1038/ng.2676. Meta-analysis of 29 genome-wide association studies identifying susceptibility loci for migraine.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chasman DI, Schurks M, Anttila V, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011;43(7):695–8. doi: 10.1038/ng.856.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Freilinger T, Anttila V, de Vries B, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44(7):777–82. doi: 10.1038/ng.2307.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Summ O, Holland PR, Akerman S, et al. TRPV1 receptor blockade is ineffective in different in vivo models of migraine. Cephalalgia Int J Headache. 2011;31(2):172–80. doi: 10.1177/0333102410375626.CrossRefGoogle Scholar
  64. 64.
    Rami HK, Thompson M, Stemp G, et al. Discovery of SB-705498: a potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg Med Chem Lett. 2006;16(12):3287–91. doi: 10.1016/j.bmcl.2006.03.030.PubMedCrossRefGoogle Scholar
  65. 65.
    Silberstein SD, Dodick DW, Saper J, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia Int J Headache. 2012;32(16):1165–79. doi: 10.1177/0333102412462642.CrossRefGoogle Scholar
  66. 66.
    Schoenen J, Vandersmissen B, Jeangette S, et al. Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial. Neurology. 2013;80(8):697–704. doi: 10.1212/WNL.0b013e3182825055.PubMedCrossRefGoogle Scholar
  67. 67.
    Magis D, Sava S, D'Elia TS, et al. Safety and patients' satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly(R) device in headache treatment: a survey of 2,313 headache sufferers in the general population. J Headache Pain. 2013;14:95. doi: 10.1186/1129-2377-14-95.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Lipton RB, Dodick DW, Silberstein SD, et al. Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol. 2010;9(4):373–80. doi: 10.1016/S1474-4422(10)70054-5.PubMedCrossRefGoogle Scholar
  69. 69.
    Bhola RLS, Giffin N, Elrington G, et al. Update of the UK post market pilot programme with Single Pulse Transcranial Magnetic Stimulation (sTMS) for acute treatment of migraine. Cephalalgia Int J Headache. 2013;33:973.Google Scholar
  70. 70.
    Goadsby P, Grosberg B, Mauskop A, et al. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia Int J Headache. 2014. doi: 10.1177/0333102414524494.Google Scholar
  71. 71.
    Magis D, Gerard P, Schoenen J. Transcutaneous Vagus Nerve Stimulation (tVNS) for headache prophylaxis: initial experience. The European Headache and Migraine Trust International Congress; 2012; London, UK.Google Scholar
  72. 72.
    Tepper SJ, Rezai A, Narouze S, et al. Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation. Headache. 2009;49(7):983–9. doi: 10.1111/j.1526-4610.2009.01451.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Headache Group, Department of NeurologyUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Headache Group, NIHR-Wellcome Trust Clinical Research FacilityKing’s College LondonLondonUK

Personalised recommendations