Skip to main content

Advertisement

Log in

Management of Hyponatremia in Various Clinical Situations

  • Neurologic Manifestations of Systemic Disease (A Pruitt, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Hyponatremia is the most common electrolyte abnormality in both inpatient and outpatient settings. The condition primarily results from the combination of impaired free water excretion due to elevated vasopressin levels in conjunction with a source of free water intake. Recent studies have revealed that even mild and asymptomatic hyponatremia is associated with deleterious consequences. It is an independent risk factor for mortality and is also associated with increased length of hospitalization and hospital costs. Even mild chronic hyponatremia can result in subtle neurologic impairment and bone demineralization, leading to falls and associated bone fractures in the elderly. Hyponatremia can be a difficult condition to treat, with varying therapeutic strategies based on the etiology, severity, duration, and extent of neurologic symptoms. The ideal magnitude of correction is also controversial, as both inadequate therapy and overly aggressive therapy can result in neurologic injury. Formulas that have been devised to aid in the treatment of hyponatremia can be inaccurate in that they fail to adequately account for the renal response to therapy. Hyponatremic encephalopathy is the most serious complication of hyponatremia, and can result in permanent neurologic impairment or death if left untreated. Individuals most at risk for developing hyponatremic encephalopathy are postmenarchal women, children under 16 years of age, patients with central nervous system disease or hypoxemia, and patients in the postoperative setting. The preferred therapy for hyponatremic encephalopathy is a 100-ml bolus of 3 % sodium chloride (513 mEq/L) administered in repeated doses until symptoms reverse, with the goal of increasing the serum sodium 5–6 mEq/L. Vasopressin (V2) antagonists (vaptans) are not appropriate for the management of acute hyponatremic encephalopathy, as the onset of action is not sufficiently rapid and the increase in sodium is not predictable. Vaptans are primarily indicated for the treatment of asymptomatic hyponatremia due to SIAD that is refractory to conventional measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119:S30–5.

    Article  CAS  PubMed  Google Scholar 

  2. Carandang F, Anglemyer A, Longhurst CA, et al. Association between maintenance fluid tonicity and hospital-acquired hyponatremia. J Pediatr. 2013;163:1646–51. This study evaluated over 1,000 hospitalized children with a normal serum sodium receiving intravenous fluids. It demonstrated that 35% of patients developed hyponatremia, with hypotonic intravenous fluid administration an independent risk factor for developing hyponatremia.

    Article  CAS  PubMed  Google Scholar 

  3. Gankam-Kengne F, Ayers C, Khera A, de Lemos J, Maalouf NM. Mild hyponatremia is associated with an increased risk of death in an ambulatory setting. Kidney Int. 2013;83:700–6.

    Article  CAS  PubMed  Google Scholar 

  4. Mohan S, Gu S, Parikh A, Radhakrishnan J. Prevalence of hyponatremia and association with mortality: results from NHANES. Am J Med. 2013;126:1127–37 e1.

    Article  CAS  PubMed  Google Scholar 

  5. Moritz ML, Carlos AJ. Hospital-acquired hyponatremia–why are hypotonic parenteral fluids still being used? Nat Clin Pract Nephrol. 2007;3:374–82.

    Article  CAS  PubMed  Google Scholar 

  6. Chung HM, Kluge R, Schrier RW, Anderson RJ. Postoperative hyponatremia. A prospective study. Arch Intern Med. 1986;146:333–6.

    Article  CAS  PubMed  Google Scholar 

  7. Hoorn EJ, Zietse R. Hyponatremia and mortality: moving beyond associations. Am J Kidney Dis. 2013;62:139–49.

    Article  CAS  PubMed  Google Scholar 

  8. Corona G, Giuliani C, Parenti G, et al. Moderate hyponatremia is associated with increased risk of mortality: evidence from a meta-analysis. PLoS One. 2013;8:e80451.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006;119:71 e1–8. This case-control study found that over 20% of hyponatremic patients presenting to the emergency department had fractures. It further demonstrated that mild chronic hyponatremia produced gait disturbance and cognitivie impairment, which may be the reason for falls.

    Article  Google Scholar 

  10. Ayus JC, Moritz ML. Bone disease as a new complication of hyponatremia: moving beyond brain injury. Clin J Am Soc Nephrol. 2010;5:167–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kinsella S, Moran S, Sullivan MO, Molloy MG, Eustace JA. Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin J Am Soc Nephrol. 2010;5:275–80. This study demonstrated that hyponatremia was an independent risk factor for fracture occurrence in a cohort of over 1,000 women who had undergone bone mineral density studies.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Verbalis JG, Barsony J, Sugimura Y, et al. Hyponatremia-induced osteoporosis. J Bone Miner Res. 2010;25:554–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ayus JC, Negri AL, Kalantar-Zadeh K, Moritz ML. Is chronic hyponatremia a novel risk factor for hip fracture in the elderly? Nephrol Dial Transplant. 2012;27:3725–31.

    Article  PubMed  Google Scholar 

  14. Amin A, Deitelzweig S, Christian R, et al. Evaluation of incremental healthcare resource burden and readmission rates associated with hospitalized hyponatremic patients in the US. J Hosp Med Off Publ Soc Hosp Med. 2012;7:634–9.

    Google Scholar 

  15. van der Meer JW, Netea MG. A salty taste to autoimmunity. N Engl J Med. 2013;368:2520–1.

    Article  PubMed  Google Scholar 

  16. Mandai S, Kuwahara M, Kasagi Y, et al. Lower serum sodium level predicts higher risk of infection-related hospitalization in maintenance hemodialysis patients: an observational cohort study. BMC Nephrol. 2013;14:276.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Barlow ED, De Wardener HE. Compulsive water drinking. Q J Med. 1959;28:235–58.

    CAS  PubMed  Google Scholar 

  18. Oksche A, Rosenthal W. The molecular basis of nephrogenic diabetes insipidus. J Mol Med. 1998;76:326–37.

    Article  CAS  PubMed  Google Scholar 

  19. Dunn FL, Brennan TJ, Nelson AE, Robertson GL. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest. 1973;52:3212–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bartter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med. 1967;42:790–806.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz WB, Bennet W, Curelop S, Bartter FC. A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med. 1957;23:529–42.

    Article  CAS  PubMed  Google Scholar 

  22. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med. 2007;356:2064–72.

    Article  CAS  PubMed  Google Scholar 

  23. Decaux G, Musch W. Clinical laboratory evaluation of the syndrome of inappropriate secretion of antidiuretic hormone. Clin J Am Soc Nephrol. 2008;3:1175–84.

    Article  CAS  PubMed  Google Scholar 

  24. Maesaka JK, Miyawaki N, Palaia T, Fishbane S, Durham JH. Renal salt wasting without cerebral disease: diagnostic value of urate determinations in hyponatremia. Kidney Int. 2007;71:822–6.

    Article  CAS  PubMed  Google Scholar 

  25. Olsson K, Ohlin B, Melander O. Epidemiology and characteristics of hyponatremia in the emergency department. Eur J Intern Med. 2013;24:110–6.

    Article  CAS  PubMed  Google Scholar 

  26. Leaf A, Bartter FC, Santos RF, Wrong O. Evidence in man that urinary electrolyte loss induced by pitressin is a function of water retention. J Clin Invest. 1953;32:868–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Robertson GL. Regulation of arginine vasopressin in the syndrome of inappropriate antidiuresis. Am J Med. 2006;119:S36–42.

    Article  CAS  PubMed  Google Scholar 

  28. Musch W, Decaux G. Treating the syndrome of inappropriate ADH secretion with isotonic saline. QJM. 1998;91:749–53.

    Article  CAS  PubMed  Google Scholar 

  29. Adrogue HJ, Madias NE. Aiding fluid prescription for the dysnatremias. Intensive Care Med. 1997;23:309–16.

    Article  CAS  PubMed  Google Scholar 

  30. Pham PC, Chen PV, Pham PT. Overcorrection of hyponatremia: where do we go wrong? Am J Kidney Dis. 2000;36:E12.

    Article  CAS  PubMed  Google Scholar 

  31. Sandhu G, Zouain E, Chan G. Caution of overdependence on formulas while treating hyponatremia. Am J Emerg Med. 2012;30:1659 e5–6.

    Article  Google Scholar 

  32. Moritz ML, Ayus JC. Prevention of Hospital-Acquired Hyponatremia: Do We Have the Answers? Pediatrics. 2011.

    Google Scholar 

  33. Moritz ML, Ayus JC. Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics. 2003;111:227–30. This review explains why hypotonic fluid administration is a primary culprit in the development of both hospital-acquired hyponatremia and hyponatremic encephalopathy, and the rationale for administering isotonic fluids for the prevention of hyponatremia.

    Article  PubMed  Google Scholar 

  34. Foster BA, Tom D, Hill V. Hypotonic versus Isotonic Fluids in Hospitalized Children: A Systematic Review and Meta-Analysis. J Pediatr 2014. This study is a meta-analysis of 10 prospective studies including almost 1,000 children, demonstrating that hypotonic fluids, in comparison to normal saline, were associated with a 6.1 relative risk for developing moderate hyponatremia.

  35. Wang J, Xu E, Xiao Y. Isotonic Versus Hypotonic Maintenance IV Fluids in Hospitalized Children: A Meta-Analysis. Pediatrics. 2014;133:105–13.

    Article  PubMed  Google Scholar 

  36. Padhi S, Bullock I, Li L, Stroud M. Intravenous fluid therapy for adults in hospital: summary of NICE guidance. BMJ. 2013;347:f7073.

    Article  PubMed  Google Scholar 

  37. Williams CN, Belzer JS, Riva-Cambrin J, Presson AP, Bratton SL. The incidence of postoperative hyponatremia and associated neurological sequelae in children with intracranial neoplasms. J Neurosurg Pediatr. 2014;13:283–90.

    Article  PubMed  Google Scholar 

  38. Pemde HK, Dutta AK, Sodani R, Mishra K. Isotonic Intravenous Maintenance Fluid Reduces Hospital Acquired Hyponatremia in Young Children with Central Nervous System Infections. Indian journal of pediatrics 2014.

  39. Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med. 1992;117:891–7. This study demonstrated that female gender was associated with a relative risk of almost 30 for death or permanent neurologic impairment from hyponatremic encephalopathy.

    Article  CAS  PubMed  Google Scholar 

  40. Ayus JC, Achinger SG, Arieff A. Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia. Am J Physiol Renal Physiol. 2008;295:F619–24.

    CAS  PubMed  Google Scholar 

  41. Arieff AI, Kozniewska E, Roberts TP, Vexler ZS, Ayus JC, Kucharczyk J. Age, gender, and vasopressin affect survival and brain adaptation in rats with metabolic encephalopathy. Am J Physiol. 1995;268:R1143–52.

    CAS  PubMed  Google Scholar 

  42. Norenberg MD, Papendick RE. Chronicity of hyponatremia as a factor in experimental myelinolysis. Ann Neurol. 1984;15:544–7.

    Article  CAS  PubMed  Google Scholar 

  43. Arieff AI, Ayus JC, Fraser CL. Hyponatraemia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ayus JC, Armstrong D, Arieff AI. Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents. Kidney Int. 2006;69:1319–25.

    CAS  PubMed  Google Scholar 

  45. Moritz ML, Ayus JC. New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children. Pediatr Nephrol. 2010;25:1225–38.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ayus JC, Arieff AI. Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA. 1999;281:2299–304. A prospective study demonstrating high morbidity and mortality associated with fluid restriction for the treatment of chronic hyponatremic encephalopathy, and that orthapedic injury could be the presenting feature of chronic hyponatremic encephalopathy in the elderly.

    Article  CAS  PubMed  Google Scholar 

  47. Ayus JC, Varon J, Arieff AI. Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med. 2000;132:711–4. This study demonstrated that pulmonary edema could be the presenting manifestation of hyponatremic encephalopathy in otherwise healthy young females, and that the condition rapidly reversed following treatment with hypertonic saline.

    Article  CAS  PubMed  Google Scholar 

  48. Sundgren PC, Reinstrup P, Romner B, Holtas S, Maly P. Value of conventional, and diffusion- and perfusion weighted MRI in the management of patients with unclear cerebral pathology, admitted to the intensive care unit. Neuroradiology. 2002;44:674–80.

    Article  CAS  PubMed  Google Scholar 

  49. Moritz ML, Ayus JC. 100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis. 2010;25:91–6. A review that explains in detail how hypertonic saline can be used safely and effectively to treat hyponatremic encephalopathy.

    Article  PubMed  Google Scholar 

  50. Verbalis JG, Goldsmith SR, Greenberg A, et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med. 2013;126:S1–42.

    Article  PubMed  Google Scholar 

  51. Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant 2014. A comprehensive review on the evaluation and management of hyponatremia put together by the European Society of Intensive Care Medicine, he European Society of Endocrinology, and the European Renal Association - European Dialysis and Transplant Association.

  52. Kerns E, Patel S, Cohen DM. Hourly oral sodium chloride for the rapid and predictable treatment of hyponatremia. Clin Nephrol 2013.

  53. Ayus JC, Arieff A, Moritz ML. Hyponatremia in marathon runners. N Engl J Med. 2005;353:427–8.

    Article  CAS  PubMed  Google Scholar 

  54. Hew-Butler T, Ayus JC, Kipps C, et al. Statement of the Second International Exercise-Associated Hyponatremia Consensus Development Conference, New Zealand, 2007. Clin J Sport Med. 2008;18:111–21.

    Article  PubMed  Google Scholar 

  55. Ayus JC, Krothapalli RK, Arieff AI. Treatment of symptomatic hyponatremia and its relation to brain damage. A prospective study. N Engl J Med. 1987;317:1190–5. One of the few prospective studies evaluating the treatment of symptomatic hyponatremia, it demostrated the safety of using hypertonic saline and that hypoxia, liver disease, and a sodium correction of > 25 mEq/L were risk factors for demyelination.

    Article  CAS  PubMed  Google Scholar 

  56. Hoorn EJ, Lindemans J, Zietse R. Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol Dial Transplant. 2006;21:70–6.

    Article  PubMed  Google Scholar 

  57. Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J. 2003;145:459–66.

    Article  CAS  PubMed  Google Scholar 

  58. Norenberg MD, Leslie KO, Robertson AS. Association between rise in serum sodium and central pontine myelinolysis. Ann Neurol. 1982;11:128–35.

    Article  CAS  PubMed  Google Scholar 

  59. Ayus JC, Krothapalli RK, Armstrong DL. Rapid correction of severe hyponatremia in the rat: histopathological changes in the brain. Am J Physiol. 1985;248:F711–9.

    CAS  PubMed  Google Scholar 

  60. Gocht A, Colmant HJ. Central pontine and extrapontine myelinolysis: a report of 58 cases. Clin Neuropathol. 1987;6:262–70.

    CAS  PubMed  Google Scholar 

  61. Kallakatta RN, Radhakrishnan A, Fayaz RK, Unnikrishnan JP, Kesavadas C, Sarma SP. Clinical and functional outcome and factors predicting prognosis in osmotic demyelination syndrome (central pontine and/or extrapontine myelinolysis) in 25 patients. J Neurol Neurosurg Psychiatry. 2011;82:326–31.

    Article  PubMed  Google Scholar 

  62. Brunner JE, Redmond JM, Haggar AM, Kruger DF, Elias SB. Central pontine myelinolysis and pontine lesions after rapid correction of hyponatremia: a prospective magnetic resonance imaging study. Ann Neurol. 1990;27:61–6.

    Article  CAS  PubMed  Google Scholar 

  63. Verbalis JG, Martinez AJ. Neurological and neuropathological sequelae of correction of chronic hyponatremia. Kidney Int. 1991;39:1274–82.

    Article  CAS  PubMed  Google Scholar 

  64. Soupart A, Penninckx R, Stenuit A, Perier O, Decaux G. Treatment of chronic hyponatremia in rats by intravenous saline: comparison of rate versus magnitude of correction. Kidney Int. 1992;41:1662–7.

    Article  CAS  PubMed  Google Scholar 

  65. Gankam Kengne F, Soupart A, Pochet R, Brion JP, Decaux G. Re-induction of hyponatremia after rapid overcorrection of hyponatremia reduces mortality in rats. Kidney Int. 2009;76:614–21. This study in chronically hyponatremic rats demonstrated that rate of correction is not the determining factor for developing demyelination; rather, it is the overall sustained magnitude of correction exceeding 25 mEq/l.

    Article  PubMed  Google Scholar 

  66. Lohr JW. Osmotic demyelination syndrome following correction of hyponatremia: association with hypokalemia. Am J Med. 1994;96:408–13.

    Article  CAS  PubMed  Google Scholar 

  67. Goebel HH, Zur PH. Central pontine myelinolysis. A clinical and pathological study of 10 cases. Brain. 1972;95:495–504.

    Article  CAS  PubMed  Google Scholar 

  68. Turnbull J, Lumsden D, Siddiqui A, Lin JP, Lim M. Osmotic demyelination syndrome associated with hypophosphataemia: 2 cases and a review of literature. Acta Paediatr. 2013;102:e164–8.

    Article  PubMed  Google Scholar 

  69. Leens C, Mukendi R, Foret F, Hacourt A, Devuyst O, Colin IM. Central and extrapontine myelinolysis in a patient in spite of a careful correction of hyponatremia. Clin Nephrol. 2001;55:248–53.

    CAS  PubMed  Google Scholar 

  70. Hagiwara K, Okada Y, Shida N, Yamashita Y. Extensive central and extrapontine myelinolysis in a case of chronic alcoholism without hyponatremia: a case report with analysis of serial MR findings. Intern Med (Tokyo, Japan). 2008;47:431–5.

    Article  Google Scholar 

  71. Koul PA, Khan UH, Jan RA, et al. Osmotic demyelination syndrome following slow correction of hyponatremia: Possible role of hypokalemia. Indian J Crit Care Med. 2013;17:231–3.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Sterns RH, Riggs JE, Schochet Jr SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;314:1535–42.

    Article  CAS  PubMed  Google Scholar 

  73. Newell KL, Kleinschmidt-DeMasters BK. Central pontine myelinolysis at autopsy; a twelve year retrospective analysis. J Neurol Sci. 1996;142:134–9.

    Article  CAS  PubMed  Google Scholar 

  74. Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 1986;314:1529–35.

    Article  CAS  PubMed  Google Scholar 

  75. Wright DG, Laureno R, Victor M. Pontine and extrapontine myelinolysis. Brain. 1979;102:361–85.

    Article  CAS  PubMed  Google Scholar 

  76. Ayus JC, Armstrong DL, Arieff AI. Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits. J Physiol. 1996;492:243–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Soupart A, Penninckx R, Namias B, Stenuit A, Perier O, Decaux G. Brain myelinolysis following hypernatremia in rats. J Neuropathol Exp Neurol. 1996;55:106–13.

    CAS  PubMed  Google Scholar 

  78. Moritz ML, Ayus JC. The pathophysiology and treatment of hyponatraemic encephalopathy: an update. Nephrol Dial Transplant. 2003;18:2486–91.

    Article  PubMed  Google Scholar 

  79. Rafat C, Schortgen F, Gaudry S, et al. Use of desmopressin acetate in severe hyponatremia in the intensive care unit. Clin J Am Soc Nephrol. 2014;9:229–37.

    Article  CAS  PubMed  Google Scholar 

  80. Soupart A, Ngassa M, Decaux G. Therapeutic relowering of the serum sodium in a patient after excessive correction of hyponatremia. Clin Nephrol. 1999;51:383–6.

    CAS  PubMed  Google Scholar 

  81. Albert NM, Nutter B, Forney J, Slifcak E, Tang WH. A randomized controlled pilot study of outcomes of strict allowance of fluid therapy in hyponatremic heart failure (SALT-HF). J Card Fail. 2013;19:1–9.

    Article  PubMed  Google Scholar 

  82. Moritz ML. Syndrome of inappropriate antidiuresis and cerebral salt wasting syndrome: are they different and does it matter? Pediatr Nephrol. 2012.

    Google Scholar 

  83. Hantman D, Rossier B, Zohlman R, Schrier R. Rapid correction of hyponatremia in the syndrome of inappropriate secretion of antidiuretic hormone. An alternative treatment to hypertonic saline. Ann Intern Med. 1973;78:870–5.

    Article  CAS  PubMed  Google Scholar 

  84. Mohmand HK, Issa D, Ahmad Z, Cappuccio JD, Kouides RW, Sterns RH. Hypertonic saline for hyponatremia: risk of inadvertent overcorrection. Clin J Am Soc Nephrol. 2007;2:1110–7.

    Article  PubMed  Google Scholar 

  85. Paulson WD, Bock GH, Nelson AP, Moxey-Mims MM, Crim LM. Hyponatremia in the very young chronic peritoneal dialysis patient. Am J Kidney Dis. 1989;14:196–9.

    Article  CAS  PubMed  Google Scholar 

  86. Claviez A, Thies R, Kleinebudde P, Suttorp M. Microencapsulated NaCl for oral salt-replacement therapy in infants. J Natl Cancer Inst. 1999;91:1513–4.

    Article  CAS  PubMed  Google Scholar 

  87. Decaux G, Waterlot Y, Genette F, Mockel J. Treatment of the syndrome of inappropriate secretion of antidiuretic hormone with furosemide. N Engl J Med. 1981;304:329–30.

    Article  CAS  PubMed  Google Scholar 

  88. Decaux G, Unger J, Brimioulle S, Mockel J. Hyponatremia in the syndrome of inappropriate secretion of antidiuretic hormone. Rapid correction with urea, sodium chloride, and water restriction therapy. Jama. 1982;247:471–4.

    Article  CAS  PubMed  Google Scholar 

  89. Decaux G. Long-term treatment of patients with inappropriate secretion of antidiuretic hormone by the vasopressin receptor antagonist conivaptan, urea, or furosemide. Am J Med. 2001;110:582–4.

    Article  CAS  PubMed  Google Scholar 

  90. Vandergheynst F, Brachet C, Heinrichs C, Decaux G. Long-term treatment of hyponatremic patients with nephrogenic syndrome of inappropriate antidiuresis: personal experience and review of published case reports. Nephron Clin Pract. 2012;120:c168–72.

    Article  CAS  PubMed  Google Scholar 

  91. Soupart A, Penninckx R, Stenuit A, Decaux G. Azotemia (48 h) decreases the risk of brain damage in rats after correction of chronic hyponatremia. Brain Res. 2000;852:167–72.

    Article  CAS  PubMed  Google Scholar 

  92. Robertson GL. Vaptans for the treatment of hyponatremia. Nat Rev Endocrinol. 2011;7:151–61.

    Article  CAS  PubMed  Google Scholar 

  93. Rozen-Zvi B, Yahav D, Gheorghiade M, Korzets A, Leibovici L, Gafter U. Vasopressin receptor antagonists for the treatment of hyponatremia: systematic review and meta-analysis. Am J Kidney Dis. 2010;56:325–37.

    Article  CAS  PubMed  Google Scholar 

  94. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112. This was a large randomized prospective study demonstrating the safety and efficacy of tolvaptan in correcting euvolemic and hypervolemic hyponatremia with one month of therapy.

    Article  CAS  PubMed  Google Scholar 

  95. Berl T, Quittnat-Pelletier F, Verbalis JG, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18. This large prospective trial of tolvaptan over a three-year period in patients with autodsomal dominant polycystic kidney disease demonstrated that over 1% of the patient required discontinuation due to liver enzyme abnormalities.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Malhotra I, Gopinath S, Janga KC, Greenberg S, Sharma SK, Tarkovsky R. Unpredictable nature of tolvaptan in treatment of hypervolemic hyponatremia: case review on role of vaptans. Case Rep Endocrinol. 2014;2014:807054.

    PubMed Central  PubMed  Google Scholar 

  98. Torres AC, Wickham EP, Biskobing DM. Tolvaptan for the management of syndrome of inappropriate antidiuretic hormone secretion: lessons learned in titration of dose. Endocr Pract. 2011;17:e97–100.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Viktorsdottir O, Indridason OS, Palsson R. Successful treatment of extreme hyponatremia in an anuric patient using continuous venovenous hemodialysis. Blood Purif. 2013;36:274–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Michael L. Moritz reports personal fees from Otsuka Pharmaceuticals.

Juan C. Ayus declares receipt of personal fees from Otsuka Pharmaceuticals, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Moritz MD, FAAP.

Additional information

This article is part of the Topical Collection on Neurologic Manifestations of Systemic Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moritz, M.L., Ayus, J.C. Management of Hyponatremia in Various Clinical Situations. Curr Treat Options Neurol 16, 310 (2014). https://doi.org/10.1007/s11940-014-0310-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-014-0310-9

Keywords

Navigation