Current Treatment Options in Neurology

, Volume 15, Issue 5, pp 634–651

Enzyme Replacement in Neuronal Storage Disorders in the Pediatric Population

PEDIATRIC NEUROLOGY (HS SINGER, SECTION EDITOR)

Opinion statement

In the past 15 years, for select lysosomal storage diseases, there has been a shift from symptom management to disease modification in terms of treatment strategy, mainly related to use of enzyme replacement therapy (ERT). Yet the application of ERT is for very few diseases, and while beneficial, ERT does not represent a cure. For some disorders, the advent of ERT has made a dramatic impact, while for others, benefits have been much more modest. Understanding of the long-term effects as well as the appropriate time for initiation of ERT is under exploration in a number of diseases, while the feasibility of ERT is still being established for others. No definite effects of ERT on central nervous system manifestations of lysosomal storage diseases have been observed for any disease to date. New strategies, including intrathecal enzyme replacement, gene therapy and substrate reduction therapy are being developed in animal models and clinical trials, which hopefully will begin a new era of nervous system disease modification in neuronal storage disorders.

Keywords

Lysosomal storage disease Neuronal storage disease Inborn error of metabolism Enzyme replacement therapy Pompe disease Glycogen storage disease Gaucher disease Fabry disease Mucopolysaccharidoses Hunter syndrome Hurler syndrome Scheie syndrome Hurler–Scheie syndrome Bone marrow transplant Hematopoietic stem cell transplant Treatment 

References and Recommended Reading

  1. 1.
    Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA. 1999;281:249–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Poupetova H, Ledvinova J, Berna L, Dvorakova L, Kozich V, Elleder M. The birth prevalence of lysosomal storage disorders in the Czech Republic: comparison with data in different populations. J Inherit Metab Dis. 2010;33:387–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Jurecka A, Żuber Z, Opoka-Winiarska V, Węgrzyn G, Tylki-Szymańska A. Effect of rapid cessation of enzyme replacement therapy: a report of 5 cases and a review of the literature. Mol Genet Metabol. 2012;107:508–12.CrossRefGoogle Scholar
  4. 4.
    Wegrzyn G, Tylki-Szymanska A, Liberek A, Piotrowska E, Jakobkiewicz-Banecka J, Marucha J, et al. Rapid deterioration of a patient with mucopolysaccharidosis type I during interruption of enzyme replacement therapy. Am J Med Genet A. 2007;143A:1925–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Ratko TA, Marbella A, Godfrey S, Aronson N. Enzyme-Replacement Therapies for Lysosomal Storage Diseases. In: Technical Briefs, edn No. 12. Edited by Quality AfHRa. Rockville, MD: http://www.ncbi.nlm.nih.gov/books/NBK117214/; 2013.
  6. 6.
    Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr. 2006;148:671–6.PubMedCrossRefGoogle Scholar
  7. 7.
    van den Hout HM, Hop W, van Diggelen OP, Smeitink JA, Smit GP, Poll-The BT, et al. The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003;112:332–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Bijvoet AG, Van Hirtum H, Kroos MA, Van de Kamp EH, Schoneveld O, Visser P, et al. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum Mol Genet. 1999;8:2145–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet. 2000;356:397–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Amalfitano A, Bengur AR, Morse RP, Majure JM, Case LE, Veerling DL, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med. 2001;3:132–8.PubMedGoogle Scholar
  11. 11.
    Van den Hout JM, Kamphoven JH, Winkel LP, Arts WF, De Klerk JB, Loonen MC, et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics. 2004;113:e448–57.PubMedCrossRefGoogle Scholar
  12. 12.
    Klinge L, Straub V, Neudorf U, Schaper J, Bosbach T, Gorlinger K, et al. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord. 2005;15:24–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Kishnani PS, Nicolino M, Voit T, Rogers RC, Tsai AC, Waterson J, et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr. 2006;149:89–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 2007;68(2):99–109.Google Scholar
  15. 15.
    Kishnani PS, Corzo D, Leslie ND, Gruskin D, Van der Ploeg A, Clancy JP, et al. Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res. 2009;66:329–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Chakrapani A, Vellodi A, Robinson P, Jones S, Wraith JE. Treatment of infantile Pompe disease with alglucosidase alpha: the UK experience. J Inherit Metab Dis. 2010;33:747–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Gelder CM, Capelle CI, Ebbink BJ, Moor-van Nugteren I, Hout JMP, Hakkesteegt MM, et al. Facial-muscle weakness, speech disorders and dysphagia are common in patients with classic infantile Pompe disease treated with enzyme therapy. J Inherit Metab Dis. 2012;35:505–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi H, Shimada Y, Ikegami M, Kawai T, Sakurai K, Urashima T, et al. Prognostic factors for the late onset Pompe disease with enzyme replacement therapy: from our experience of 4 cases including an autopsy case. Mol Genet Metab. 2010;100:14–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Rohrbach M, Klein A, Kohli-Wiesner A, Veraguth D, Scheer I, Balmer C, et al. CRIM-negative infantile Pompe disease: 42-month treatment outcome. J Inherit Metab Dis. 2010;33:751–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Ebbink BJ, Aarsen FK, van Gelder CM, van den Hout JM, Weisglas-Kuperus N, Jaeken J, et al. Cognitive outcome of patients with classic infantile Pompe disease receiving enzyme therapy. Neurology. 2012;78(19):1512–8.Google Scholar
  21. 21.
    Nicolino M, Byrne B, Wraith JE, Leslie N, Mandel H, Freyer DR, et al. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med. 2009;11:210–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamdan MA, Almalik MH, Mirghani HM. Early administration of enzyme replacement therapy for Pompe disease: short-term follow-up results. J Inherit Metab Dis. 2008;31 Suppl 2:S431–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Kishnani PS, Goldenberg PC, DeArmey SL, Heller J, Benjamin D, Young S, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Mendelsohn NJ, Messinger YH, Rosenberg AS, Kishnani PS. Elimination of antibodies to recombinant enzyme in Pompe's disease. N Engl J Med. 2009;360:194–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Messinger YH, Mendelsohn NJ, Rhead W, Dimmock D, Hershkovitz E, Champion M, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14:135–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Banugaria SG, Prater SN, Ng YK, Kobori JA, Finkel RS, Ladda RL, et al. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet Med. 2011;13:729–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Banugaria SG, Patel TT, Mackey J, Das S, Amalfitano A, Rosenberg AS, et al. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease: need for agents to target antibody-secreting plasma cells. Mol Genet Metabol. 2012;105:677–80.CrossRefGoogle Scholar
  28. 28.
    Angelini C, Semplicini C, Ravaglia S, Moggio M, Comi GP, Musumeci O, et al. New motor outcome function measures in evaluation of Late-Onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve. 2012;45:831–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Bembi B, Pisa FE, Confalonieri M, Ciana G, Fiumara A, Parini R, et al. Long-term observational, non-randomized study of enzyme replacement therapy in late-onset glycogenosis type II. J Inherit Metab Dis. 2010;33:727–35.PubMedCrossRefGoogle Scholar
  30. 30.
    van der Ploeg AT, Clemens PR, Corzo D, Escolar DM, Florence J, Groeneveld GJ, et al. A randomized study of alglucosidase alfa in late-onset Pompe's disease. N Engl J Med. 2010;362:1396–406.PubMedCrossRefGoogle Scholar
  31. 31.
    van der Ploeg AT, Barohn R, Carlson L, Charrow J, Clemens PR, Hopkin RJ, et al. Open-label extension study following the Late-Onset Treatment Study (LOTS) of alglucosidase alfa. Mol Genet Metabol. 2012;107:456–61.CrossRefGoogle Scholar
  32. 32.
    Angelini C, Semplicini C, Ravaglia S, Bembi B, Servidei S, Pegoraro E, et al. Observational clinical study in juvenile-adult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J Neurol. 2012;259:952–8.PubMedCrossRefGoogle Scholar
  33. 33.
    van Capelle CI, Winkel LP, Hagemans ML, Shapira SK, Arts WF, van Doorn PA, et al. Eight years experience with enzyme replacement therapy in two children and one adult with Pompe disease. Neuromuscul Disord. 2008;18:447–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Winkel LP, Van den Hout JM, Kamphoven JH, Disseldorp JA, Remmerswaal M, Arts WF, et al. Enzyme replacement therapy in late-onset Pompe's disease: a three-year follow-up. Ann Neurol. 2004;55:495–502.PubMedCrossRefGoogle Scholar
  35. 35.
    van Capelle CI, van der Beek NA, Hagemans ML, Arts WF, Hop WC, Lee P, et al. Effect of enzyme therapy in juvenile patients with Pompe disease: a three-year open-label study. Neuromuscul Disord. 2010;20:775–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Goker-Alpan O, Wiggs EA, Eblan MJ, Benko W, Ziegler SG, Sidransky E, et al. Cognitive outcome in treated patients with chronic neuronopathic Gaucher disease. J Pediatr. 2008;153:89–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Brumshtein B, Salinas P, Peterson B, Chan V, Silman I, Sussman JL, et al. Characterization of gene-activated human acid-beta-glucosidase: crystal structure, glycan composition, and internalization into macrophages. Glycobiology. 2010;20:24–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Andersson H, Kaplan P, Kacena K, Yee J. Eight-year clinical outcomes of long-term enzyme replacement therapy for 884 children with Gaucher disease type 1. Pediatrics. 2008;122:1182–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Gonzalez DE, Turkia HB, Lukina EA, Kisinovsky I, Dridi MF, Elstein D, et al. Enzyme replacement therapy with velaglucerase alfa in Gaucher disease: results from a randomized, double-blind, multinational, Phase 3 study. Am J Hematol. 2013;88:166–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Weinreb NJ, Charrow J, Andersson HC, Kaplan P, Kolodny EH, Mistry P, et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med. 2002;113:112–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Ben Turkia H, Gonzalez DE, Barton NW, Zimran A, Kabra M, Lukina EA, et al. Velaglucerase alfa enzyme replacement therapy compared with imiglucerase in patients with Gaucher disease. Am J Hematol. 2013;88:179–84.PubMedCrossRefGoogle Scholar
  42. 42.
    Zimran A, Pastores GM, Tylki-Szymanska A, Hughes DA, Elstein D, Mardach R, et al. Safety and efficacy of velaglucerase alfa in Gaucher disease type 1 patients previously treated with imiglucerase. Am J Hematol. 2013;88:172–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Elstein D, Altarescu G, Maayan H, Phillips M, Abrahamov A, Hadas-Halpern I, et al. Booster-effect with velaglucerase alfa in patients with Gaucher disease switched from long-term imiglucerase therapy: early Access Program results from Jerusalem. Blood Cells Mol Dis. 2012;48:45–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaplan P, Baris H, De Meirleir L, Di Rocco M, El-Beshlawy A, Huemer M, et al. Revised recommendations for the management of Gaucher disease in children. Eur J Pediatr. 2013;172:447–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Bove KE, Daugherty C, Grabowski GA. Pathological findings in Gaucher disease type 2 patients following enzyme therapy. Hum Pathol. 1995;26:1040–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Prows CA, Sanchez N, Daugherty C, Grabowski GA. Gaucher disease: enzyme therapy in the acute neuronopathic variant. Am J Med Genet. 1997;71:16–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Schiffmann R, Heyes MP, Aerts JM, Dambrosia JM, Patterson MC, DeGraba T, et al. Prospective study of neurological responses to treatment with macrophage-targeted glucocerebrosidase in patients with type 3 Gaucher's disease. Ann Neurol. 1997;42:613–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Altarescu G, Hill S, Wiggs E, Jeffries N, Kreps C, Parker CC, et al. The efficacy of enzyme replacement therapy in patients with chronic neuronopathic Gaucher's disease. J Pediatr. 2001;138:539–47.PubMedCrossRefGoogle Scholar
  49. 49.
    Dobbelaere D, Sukno S, Defoort-Dhellemmes S, Lamblin MD, Largillière C. Neurological outcome of a patient with Gaucher disease type III treated by enzymatic replacement therapy. J Inherit Metab Dis. 1998;21:74–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Kraoua I, Sedel F, Caillaud C, Froissart R, Stirnemann J, Chaurand G, et al. A French experience of type 3 Gaucher disease: phenotypic diversity and neurological outcome of 10 patients. Brain Dev. 2011;33:131–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Erikson A, Forsberg H, Nilsson M, Astrom M, Mansson JE. Ten years' experience of enzyme infusion therapy of Norrbottnian (type 3) Gaucher disease. Acta Paediatr. 2006;95:312–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Tylki-szymańska A, Czartoryska B. Enzyme replacement therapy in type III Gaucher disease. J Inherit Metab Dis. 1999;22:203–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Vellodi A, Tylki-Szymanska A, Davies EH, Kolodny E, Bembi B, Collin-Histed T, et al. Management of neuronopathic Gaucher disease: revised recommendations. J Inherit Metab Dis. 2009;32:660–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Alfadhel M, Sirrs S. Enzyme replacement therapy for Fabry disease: some answers but more questions. Ther Clin Risk Manag. 2011;7:69–82.PubMedGoogle Scholar
  55. 55.
    Ries M, Clarke JT, Whybra C, Timmons M, Robinson C, Schlaggar BL, et al. Enzyme-replacement therapy with agalsidase alfa in children with Fabry disease. Pediatrics. 2006;118:924–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Ramaswami U, Wendt S, Pintos-Morell G, Parini R, Whybra C, Leon Leal JA, et al. Enzyme replacement therapy with agalsidase alfa in children with Fabry disease. Acta Paediatr. 2007;96:122–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Schiffmann R, Martin RA, Reimschisel T, Johnson K, Castaneda V, Lien YH, et al. Four-year prospective clinical trial of agalsidase alfa in children with Fabry disease. J Pediatr. 2010;156:832–7. 837 e831.PubMedCrossRefGoogle Scholar
  58. 58.
    Ramaswami U, Parini R, Pintos-Morell G, Kalkum G, Kampmann C, Beck M, on behalf of the FOS Investigators. Fabry disease in children and response to enzyme replacement therapy: results from the Fabry Outcome Survey. Clin Genet. 2012;81:485–90.Google Scholar
  59. 59.
    Banikazemi M, Bultas J, Waldek S, Wilcox WR, Whitley CB, McDonald M, et al. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med. 2007;146:77–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Wraith JE, Tylki-Szymanska A, Guffon N, Lien YH, Tsimaratos M, Vellodi A, et al. Safety and Efficacy of Enzyme Replacement Therapy with Agalsidase Beta: An International, Open-label Study in Pediatric Patients with Fabry Disease. J Pediatr. 2008;152:563–70.e561.PubMedCrossRefGoogle Scholar
  61. 61.
    Vedder AC, Linthorst GE, Houge G, Groener JE, Ormel EE, Bouma BJ, et al. Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One. 2007;2:e598.PubMedCrossRefGoogle Scholar
  62. 62.
    Group LEA. http://www.specialisedservices.nhs.uk/library/23/Fabry_Disease_Standard_Operating_Procedures_Adults_and_Children.pdf. Edited by; Version dated 29 April 2013: Fabry Disease Standard Operating Procedures (Adults and Children).
  63. 63.
    Kakkis ED, Muenzer J, Tiller GE, Waber L, Belmont J, Passage M, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. New Engl J Med. 2001;344:182–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Wraith JE, Clarke LA, Beck M, Kolodny EH, Pastores GM, Muenzer J, et al. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human α-L-iduronidase (laronidase). J Pediatr. 2004;144:581–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Wraith JE, Beck M, Lane R, van der Ploeg A, Shapiro E, Xue Y, et al. Enzyme Replacement Therapy in Patients Who Have Mucopolysaccharidosis I and Are Younger Than 5 Years: results of a Multinational Study of Recombinant Human α-l-Iduronidase (Laronidase). Pediatrics. 2007;120:e37–46.PubMedCrossRefGoogle Scholar
  66. 66.
    Wynn RF, Mercer J, Page J, Carr TF, Jones S, Wraith JE. Use of enzyme replacement therapy (Laronidase) before hematopoietic stem cell transplantation for mucopolysaccharidosis I: experience in 18 patients. J Pediatr. 2009;154:135–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Eisengart JB, Rudser KD, Tolar J, Orchard PJ, Kivisto T, Ziegler RS, et al. Enzyme Replacement is Associated with Better Cognitive Outcomes after Transplant in Hurler Syndrome. J Pediatr. 2013;162:375–80.e371.PubMedCrossRefGoogle Scholar
  68. 68.
    Scarpa M, Almassy Z, Beck M, Bodamer O, Bruce I, De Meirleir L, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011;6:72.PubMedCrossRefGoogle Scholar
  69. 69.
    Muenzer J, Wraith JE, Beck M, Giugliani R, Harmatz P, Eng CM, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8(8):465–73.Google Scholar
  70. 70.
    Muenzer J, Gucsavas-Calikoglu M, McCandless SE, Schuetz TJ, Kimura A. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab. 2007;90:329–37.PubMedCrossRefGoogle Scholar
  71. 71.
    Muenzer J, Beck M, Eng CM, Giugliani R, Harmatz P, Martin R, et al. Long-term, open-labeled extension study of idursulfase in the treatment of Hunter syndrome. Genet Med. 2011;13:95–101.PubMedCrossRefGoogle Scholar
  72. 72.
    Muenzer J, Beck M, Giugliani R, Suzuki Y, Tylki-Szymanska A, Valayannopoulos V, et al. Idursulfase treatment of Hunter syndrome in children younger than 6 years: results from the Hunter Outcome Survey. Genet Med. 2011;13:102–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Hunley TE, Corzo D, Dudek M, Kishnani P, Amalfitano A, Chen YT, et al. Nephrotic syndrome complicating alpha-glucosidase replacement therapy for Pompe disease. Pediatrics. 2004;114:e532–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Starzyk K, Richards S, Yee J, Smith SE, Kingma W. The long-term international safety experience of imiglucerase therapy for Gaucher disease. Mol Genet Metab. 2007;90:157–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Brady RO, Murray GJ, Oliver KL, Leitman SF, Sneller MC, Fleisher TA, et al. Management of neutralizing antibody to Ceredase in a patient with type 3 Gaucher disease. Pediatrics. 1997;100:E11.PubMedCrossRefGoogle Scholar
  76. 76.
    Wolf DA, Hanson LR, Aronovich EL, Nan Z, Low WC, Frey II WH, et al. Lysosomal enzyme can bypass the blood–brain barrier and reach the CNS following intranasal administration. Mol Genet Metabol. 2012;106:131–4.CrossRefGoogle Scholar
  77. 77.
    Wang D, El-Amouri SS, Dai M, Kuan CY, Hui DY, Brady RO, et al. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood–brain barrier. Proc Natl Acad Sci U S A. 2013;110:2999–3004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations