Current Treatment Options in Neurology

, Volume 15, Issue 1, pp 78–89 | Cite as

Optic Nerve Hypoplasia Syndrome: A Review of the Epidemiology and Clinical Associations

  • Pamela Garcia-FilionEmail author
  • Mark Borchert

Opinion statement

Background: Optic nerve hypoplasia (ONH) has developed into a leading cause of congenital blindness. The frequently associated features of hypopituitarism and absent septum pellucidum were felt to have embryonic linkage as “septo-optic dysplasia” or “de Morsier’s syndrome.” More recent studies have suggested these associations are independent of one another. This review provides an assessment of the historical and recent evidence linking neuroradiologic, endocrinologic and developmental morbidity in patients with ONH. The prenatal risk factors, heritability, and genetic mutations associated with ONH are described. Results: Recognition of the critical association of ONH with hypopituitarism should be attributed to William Hoyt, not Georges de Morsier. De Morsier never described a case of ONH or recognized its association with hypopituitarism or missing septum pellucidum. Hypopituitarism is caused by hypothalamic dysfunction. This, and other more recently identified associations with ONH, such as developmental delay and autism, are independent of septum pellucidum development. Other common neuroradiographic associations such as corpus callosum hypoplasia, gyrus dysplasia, and cortical heterotopia may have prognostic significance. The predominant prenatal risk factors for ONH are primiparity and young maternal age. Presumed risk factors such as prenatal exposure to drugs and alcohol are not supported by scrutiny of the literature. Heritability and identified gene mutations in cases of ONH are rare. Conclusion: Children with ONH require monitoring for many systemic, developmental, and even life-threatening problems independent of the severity of ONH and presence of brain malformations including abnormalities of the septum pellucidum. “Septo-optic dysplasia” and “de Morsier’s syndrome” are historically inaccurate and clinically misleading terms.


Optic nerve hypoplasia Septo-optic dysplasia DeMorsier’s syndrome Hypothalamic dysfunction Hypopituitarism Pediatric visual impairment Pediatric visual impairment  Developmental delay Birth defect Epidemiology 



No potential conflicts of interest relevant to this article were reported.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schwarz O. Ein fall von mangelhafter bildung beider sehnerven. Albrecth von Graefes Arch Klin Ophthalmol. 1915;90:326.Google Scholar
  2. 2.
    Reeves D. Congenital absence of the septum pellucidum. Bull Johns Hopkins. 1941;69:61–71.Google Scholar
  3. 3.••
    Borchert M. Reappraisal of the optic nerve hypoplasia syndrome. J Neuroophthalmol. 2012;32(1):58–67. This review article provides a critical discussion on the history and evolution of the term "septo-optic dysplasia" relative to optic nerve hypoplasia.PubMedCrossRefGoogle Scholar
  4. 4.
    De Morsier G. Etudes sur les dysraphies cranio-encephaliques: agenesis du septum lucidum acec malformatnio du tractus optique. La dysplasie septo-optique. Schweiz Arch Neurol Psychiatr. 1956;77:267–92.Google Scholar
  5. 5.
    Gross H. and Hoff H. Sur les malformations ventruculaires dependantes des dysgenesies commisurales., in Malformations congentales du cerveau., G. Heuyer, M. Feld, and J. Gruner, Editors. 1959, Paris: Masson. p. 329–351.Google Scholar
  6. 6.
    Hoyt WF, et al. Septo-optic dysplasia and pituitary dwarfism. Lancet. 1970;1(7652):893–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Ahmad T, et al. Endocrinological and auxological abnormalities in young children with optic nerve hypoplasia: a prospective study. J Pediatr. 2006;148(1):78–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Garcia-Filion P, et al. Neuroradiographic, endocrinologic, and ophthalmic correlates of adverse developmental outcomes in children with optic nerve hypoplasia: a prospective study. Pediatrics. 2008;121(3):e653–9.PubMedCrossRefGoogle Scholar
  9. 9.•
    Vedin AM, et al. Serum prolactin concentrations in relation to hypopituitarism and obesity in children with optic nerve hypoplasia. Horm Res Paediatr. 2012;77(5):277–80. This article reports a high prevalence of hyperprolactinemia in children with ONH as a marker of underlying hypothalamic dysfunction.PubMedCrossRefGoogle Scholar
  10. 10.
    Blohme J, Tornqvist K. Visual impairment in Swedish children. III. Diagnoses. Acta Ophthalmol Scand. 1997;75(6):681–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Blohme J, Bengtsson-Stigmar E, Tornqvist K. Visually impaired Swedish children. Longitudinal comparisons 1980–1999. Acta Ophthalmol Scand. 2000;78(4):416–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Patel L, et al. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J Pediatr. 2006;148(1):85–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Jan J, et al. Blindness due to optic-nerve atrophy and hypoplasia in children: an epidemiological study (1944–1974). Dev Med Child Neurol. 1977;19(3):353–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Williamson WD. Visually impaired infants in the 1980s. A survey of etiologic factors and additional handicapping conditions in a school population. Clin Pediatr (Phila). 1987;26(5):241–4.CrossRefGoogle Scholar
  15. 15.
    DeCarlo DK, Nowakowski R. Causes of visual impairment among students at the Alabama school for the blind. J Am Optom Assoc. 1999;70(10):647–52.PubMedGoogle Scholar
  16. 16.
    Mets MB. Childhood blindness and visual loss: an assessment at two institutions including a "new" cause. Trans Am Ophthalmol Soc. 1999;97:653–96.PubMedGoogle Scholar
  17. 17.
    Hatton D, et al. Babies count: the national registry for children with visual impairments, birth to 3 years. J AAPOS. 2007;11(4):351–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Margalith D, et al. Clinical spectrum of optic nerve hypoplasia: a review of 51 patients. Dev Med Child Neurol. 1984;26:311–22.PubMedCrossRefGoogle Scholar
  19. 19.
    McNay DE, et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab. 2007;92(2):691–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Murray PG, Paterson WF, Donaldson MD. Maternal age in patients with septo-optic dysplasia. J Pediatr Endocrinol Metab. 2005;18(5):471–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Tornqvist K, Ericsson A, Kallen B. Optic nerve hypoplasia: risk factors and epidemiology. Acta Ophthalmol Scand. 2002;80:300–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Webb EA, Dattani MT. Septo-optic dysplasia. Eur J Hum Genet. 2010;18(4):393–7.PubMedCrossRefGoogle Scholar
  23. 23.••
    Garcia-Filion P, et al. Optic nerve hypoplasia in North America: a re-appraisal of perinatal risk factors. Acta Ophthalmol. 2010;88(5):527–34. This article reports the etiologic correlates of ONH identified from a systematic, standardized prenatal questionnaire in a cohort study of near-consecutive cases of ONH.PubMedGoogle Scholar
  24. 24.
    Birkebaek N, et al. Endocrine status in patients with optic nerve hypoplasia: relationship to midline central nervous system abnormalities and appearance of the hypothalamic-pituitary axis on magnetic resonance imaging. J Clin Endocrinol Metab. 2003;88(11):5281–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hellstrom A, Wiklund L, Svensson E. The clinical and morphological spectrum of optic nerve hypoplasia. J AAPOS. 1999;3(4):212–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Hotchkiss M, Green W. Optic nerve aplasia and hypoplasia. J Pediatr Ophthalmol Strabismus. 1979;16:225–40.PubMedGoogle Scholar
  27. 27.
    Hoyt C, Billson F. Maternal anticonvulsants and optic nerve hypoplasia. Br J Ophthalmol. 1978;62:3–6.PubMedCrossRefGoogle Scholar
  28. 28.
    McMahon C, Braddock S. Septo-optic dysplasia as a manifestation of valproic acid embryopathy. Teratology. 2001;64:83–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Siatkowski R, et al. The clinical, neuroradiographic, and endocrinologic profile of patients with bilateral optic nerve hypoplasia. Ophthalmology. 1997;104(3):493–6.PubMedGoogle Scholar
  30. 30.
    West J, Burke J, Strachan I. Carbamazepine, epilepsy, and optic nerve hypoplasia. Br J Ophthalmol. 1990;74:511.PubMedCrossRefGoogle Scholar
  31. 31.
    Burke J, O'Keefe M, Bowell R. Optic nerve hypoplasia, encephalopathy, and neurodevelopmental handicap. Br J Ophthalmol. 1991;75(4):236–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Hittner H, Desmond M, Montgomery J. Optic nerve manifestations of cytomegalovirus infection. Am J Ophthalmol. 1976;81:661–5.PubMedGoogle Scholar
  33. 33.
    Kim R, et al. Superior segmental optic nerve hypoplasia: a sign of maternal diabetes. Arch Ophthalmol. 1989;107:1312–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Ribeiro I, et al. Ocular manifestations in fetal alcohol syndrome. Eur J Ophthalmol. 2007;17(1):104–9.PubMedGoogle Scholar
  35. 35.
    Stromland K. Ocular involvement in the fetal alcohol syndrome. Surv Ophthalmol. 1987;31(4):277–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Ang SL, et al. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development. 1996;122(1):243–52.PubMedGoogle Scholar
  37. 37.
    Brinkmeier ML, et al. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics. 2009;93(5):449–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Dattani MT, et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998;19(2):125–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Rizzoti K, et al. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet. 2004;36(3):247–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Svingen T, et al. Prokr2-deficient mice display vascular dysmorphology of the fetal testes: potential implications for Kallmann syndrome aetiology. Sex Dev. 2011;5(6):294–303.PubMedCrossRefGoogle Scholar
  41. 41.
    Taranova OV, et al. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006;20(9):1187–202.PubMedCrossRefGoogle Scholar
  42. 42.
    Cohen RN, et al. Enhanced repression by HESX1 as a cause of hypopituitarism and septooptic dysplasia. J Clin Endocrinol Metab. 2003;88(10):4832–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Tajima T, et al. Sporadic heterozygous frameshift mutation of HESX1 causing pituitary and optic nerve hypoplasia and combined pituitary hormone deficiency in a Japanese patient. J Clin Endocrinol Metab. 2003;88(1):45–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Gorbenko Del Blanco D., et al. A novel OTX2 mutation in a patient with Combined Pituitary Hormone Deficiency, pituitary malformation and an underdeveloped left optic nerve. Eur J Endocrinol, 2012.Google Scholar
  45. 45.
    Raivio T, et al. Genetic overlap in kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J Clin Endocrinol Metab. 2012;97(4):E694–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Mellado C, et al. Candidate gene sequencing of LHX2, HESX1, and SOX2 in a large schizencephaly cohort. Am J Med Genet A. 2010;152A(11):2736–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Benner JD, et al. Septo-optic dysplasia in two siblings. Am J Ophthalmol. 1990;109(6):632–7.PubMedGoogle Scholar
  48. 48.
    Cidis MB, et al. Mirror-image optic nerve dysplasia with associated anisometropia in identical twins. J Am Optom Assoc. 1997;68(5):325–9.PubMedGoogle Scholar
  49. 49.
    Hackenbruch Y, et al. Familial bilateral optic nerve hypoplasia. Am J Ophthalmol. 1975;79:314–20.PubMedGoogle Scholar
  50. 50.
    Kytila J, Miettinen P. On bilateral aplasia of the optic nerve. Acta Ophthalmol (Copenh). 1961;39:416–9.CrossRefGoogle Scholar
  51. 51.
    Missiroli S. Una nuova sindrome congenita a caratterie famigliare: ipoplasia del nervo ottico ed emiangopsia binasale. Boll Ocul. 1947;26:683–98.Google Scholar
  52. 52.
    Hellstrom A, et al. Reduced retinal vascularization in children with growth hormone deficiency. J Clin Endocrinol Metab. 1999;84(2):795–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Mosier MA, et al. Hypoplasia of the optic nerve. Arch Ophthalmol. 1978;96(8):1437–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Borchert M, et al. Clinical assessment, optic disk measurements, and visual-evoked potential in optic nerve hypoplasia. Am J Ophthalmol. 1995;120(5):605–12.PubMedGoogle Scholar
  55. 55.
    Zeki SM, Dudgeon J, Dutton GN. Reappraisal of the ratio of disc to macula/disc diameter in optic nerve hypoplasia. Br J Ophthalmol. 1991;75(9):538–41.PubMedCrossRefGoogle Scholar
  56. 56.
    McCulloch DL, et al. Clinical electrophysiology and visual outcome in optic nerve hypoplasia (ONH). Br J Ophthalmol. 2010;94:1017–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Jacobson L, Hellstrom A, Flodmark O. Large cups in normal-sized optic discs: a variant of optic nerve hypoplasia in children with periventricular leukomalacia. Arch Ophthalmol. 1997;115(10):1263–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Brodsky MC. Periventricular leukomalacia: an intracranial cause of pseudoglaucomatous cupping. Arch Ophthalmol. 2001;119(4):626–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Fink C., et al. Newborn thyroid-stimulating hormone in children with optic nerve hypoplasia: Associations with hypothyroidism and vision. J AAPOS, 2012. In Press.Google Scholar
  60. 60.
    Magoon EH, Robb RM. Development of myelin in human optic nerve and tract. A light and electron microscopic study. Arch Ophthalmol. 1981;99(4):655–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Patel H, et al. Optic nerve hypoplasia with hypopituitarism. Septo-optic dysplasia with hypopituitarism. Am J Dis Child. 1975;129(2):175–80.PubMedGoogle Scholar
  62. 62.
    Brodsky MC, Glasier CM. Optic nerve hypoplasia. Clinical significance of associated central nervous system abnormalities on magnetic resonance imaging. Arch Ophthalmol. 1993;111(1):66–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Williams J, et al. Septo-optic dysplasia: the clinical insignificance of an absent septum pellucidum. Dev Med Child Neurol. 1993;35(6):490–501.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilson DM, et al. Computed tomographic findings in septo-optic dysplasia: discordance between clinical and radiological findings. Neuroradiology. 1984;26(4):279–83.PubMedGoogle Scholar
  65. 65.
    Kelberman D, Dattani MT. Septo-optic dysplasia - novel insights into the aetiology. Horm Res. 2008;69(5):257–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Miller SP, et al. Septo-optic dysplasia plus: a spectrum of malformations of cortical development. Neurology. 2000;54(8):1701–3.PubMedCrossRefGoogle Scholar
  67. 67.
    Glass HC, et al. Agenesis of the corpus callosum in California 1983–2003: a population-based study. Am J Med Genet A. 2008;146A(19):2495–500.PubMedCrossRefGoogle Scholar
  68. 68.
    Szabo N, et al. Corpus callosum anomalies: birth prevalence and clinical spectrum in Hungary. Pediatr Neurol. 2011;44(6):420–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Schell-Apacik CC, et al. Agenesis and dysgenesis of the corpus callosum: clinical, genetic and neuroimaging findings in a series of 41 patients. Am J Med Genet A. 2008;146A(19):2501–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Phillips PH, Spear C, Brodsky MC. Magnetic resonance diagnosis of congenital hypopituitarism in children with optic nerve hypoplasia. J AAPOS. 2001;5(5):275–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Kucharczyk W, et al. The effect of phospholipid vesicles on the NMR relaxation of water: an explanation for the MR appearance of the neurohypophysis. AJNR Am J Neuroradiol. 1990;11(4):693–700.PubMedGoogle Scholar
  72. 72.
    Birkebaek NH, et al. Optic nerve size evaluated by magnetic resonance imaging in children with optic nerve hypoplasia, multiple pituitary hormone deficiency, isolated growth hormone deficiency, and idiopathic short stature. J Pediatr. 2004;145(4):536–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Hellstrom A, Wiklund LM, Svensson E. Diagnostic value of magnetic resonance imaging and planimetric measurement of optic disc size in confirming optic nerve hypoplasia. J AAPOS. 1999;3(2):104–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Brodsky MC, et al. Optic nerve hypoplasia. Identification by magnetic resonance imaging. Arch Ophthalmol. 1990;108(11):1562–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Haddad NG, Eugster EA. Hypopituitarism and neurodevelopmental abnormalities in relation to central nervous system structural defects in children with optic nerve hypoplasia. J Pediatr Endocrinol Metab. 2005;18(9):853–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Reidl S, et al. Auxological, ophthalmological, neurological and MRI findings in 25 Austrian patients with septo-optic dysplasia (SOD). Horm Res. 2002;58 suppl 3:16–9.CrossRefGoogle Scholar
  77. 77.
    Ma NS, et al. Evolving central hypothyroidism in children with optic nerve hypoplasia. J Pediatr Endocrinol Metab. 2010;23(1–2):53–8.PubMedGoogle Scholar
  78. 78.
    Melmed S, et al. Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:273–88.PubMedCrossRefGoogle Scholar
  79. 79.
    Costin G, Murphree AL. Hypothalamic-pituitary function in children with optic nerve hypoplasia. Am J Dis Child. 1985;139(3):249–54.PubMedGoogle Scholar
  80. 80.
    Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav. 2001;74(4–5):703–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Rivkees SA. Arrhythmicity in a child with septo-optic dysplasia and establishment of sleep-wake cyclicity with melatonin. J Pediatr. 2001;139(3):463–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Rivkees SA, et al. Prevalence and risk factors for disrupted circadian rhythmicity in children with optic nerve hypoplasia. Br J Ophthalmol. 2010;94(10):1358–62.PubMedCrossRefGoogle Scholar
  83. 83.
    Moore RY. Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med. 1997;48:253–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature. 2002;417(6886):329–35.PubMedCrossRefGoogle Scholar
  85. 85.
    Weaver DR. The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms. 1998;13(2):100–12.PubMedCrossRefGoogle Scholar
  86. 86.
    Edgar DM, Dement WC, Fuller CA. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 1993;13(3):1065–79.PubMedGoogle Scholar
  87. 87.
    Moore-Ede MC, Czeisler CA, Richardson GS. Circadian timekeeping in health and disease. Part 1. Basic properties of circadian pacemakers. N Engl J Med. 1983;309(8):469–76.PubMedCrossRefGoogle Scholar
  88. 88.
    Garcia M, et al. Systemic and ocular findings in 100 patients with optic nerve hypoplasia. J Child Neurol. 2006;21(11):949–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Griffiths P, Hunt S. Specific spatial defect in a child with septo-optic dysplasia. Dev Med Child Neurol. 1984;26(3):395–400.PubMedCrossRefGoogle Scholar
  90. 90.
    Brown R, et al. Are there "autistic-like" features in congenitally blind children? J Child Psychol Psychiatry. 1997;38(6):693–703.PubMedCrossRefGoogle Scholar
  91. 91.
    Ek U, Fernell E, Jacobson L. Cognitive and behavioural characteristics in blind children with bilateral optic nerve hypoplasia. Acta Paediatr. 2005;94(10):1421–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Parr J.R., et al. Social communication difficulties and autism spectrum disorder in young children with optic nerve hypoplasia and/or septo-optic dysplasia. Dev Med Child Neurol, 2010.Google Scholar
  93. 93.
    Fink C, Borchert M. Optic nerve hypoplasia and autism: common features of spectrum diseases. J Vis Impair Blind. 2011;105(6):334–8.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.The Vision Center at Children’s Hospital Los AngelesLos AngelesUSA
  2. 2.Keck Medical Center of the University of Southern CaliforniaLos AngelesUSA

Personalised recommendations