Current Treatment Options in Neurology

, Volume 14, Issue 6, pp 541–548 | Cite as

Overview of Therapeutic Hypothermia

CEREBROVASCULAR DISORDERS (HP ADAMS JR, SECTION EDITOR)

Opinion statement

Therapeutic hypothermia has proven neuroprotective effects in global cerebral ischemia. Indications for hypothermia induction include cardiac arrest and neonatal asphyxia. The two general methods of induced hypothermia are either surface cooling or endovascular cooling. Hypothermia should be induced as early as possible to achieve maximum neuroprotection and edema blocking effect. Endovascular cooling has the benefit of shorter time to reach target temperature but catheter insertion requires expertise and training, which may be a barrier to widespread availability. The optimum method of cooling is yet to be determined but a multimodal approach is necessary to address three phases of cooling: induction, maintentance, and rewarm. Specifying core practitioners who are well-versed in established guidelines can help integrate the multidisciplinary team that is needed to successfully implement cooling protocols. Reducing shivering to make heat exchange more efficient with tighter temperature control enables quicker time to target temperature and avoids rewarming which can lead to inadvertent increase in intracranial pressure and cerebral edema. Promising applications but yet to be determined is whether hypothermia treatment can improve outcomes in acute ischemic stroke or traumatic brain injury.

Keywords

Hypothermia Therapeutic hypothermia Cardiac arrest Cerebral ischemia Surface cooling Endovascular cooling Shivering Neuroprotection Treatment 

Notes

Disclosure

Drs. Song and Lyden are investigators at Cedars-Sinai for the Intravascular Cooling in the Treatment of Stroke 2/3 Trial (ICTuS2/3). This study is part of the National Institutes of Health–sponsored, Specialized Program of Translational Research in Acute Stroke (SPOTRIAS) program, which allows researchers to enhance and initiate translational research that ultimately will benefit stroke patients by treating more patients in less than 2 hours, and finding ways to treat additional patients later.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Eng J Med. 2002;346:549–56.Google Scholar
  2. 2.
    Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Eng J Med. 2002;346:557–63.CrossRefGoogle Scholar
  3. 3.
    Seupaul RA, Wilbur LG. Evidence-based emergency medicine. Does therapeutic hypothermia benefit survivors of cardiac arrest? Ann Emerg Med. 2011;58:282–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Eng J Med. 2005;353:1574–84.CrossRefGoogle Scholar
  5. 5.
    Hippocrates. De vetere medicina. 460–375 BC.Google Scholar
  6. 6.
    Benson DW, Williams Jr GR, Spencer FC, Yates AJ. The use of hypothermia after cardiac arrest. Anesth Analg. 1959;38:423–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Sterz F, Safar P, Tisherman S, Radovsky A, Kuboyama K, Oku K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit Care Med. 1991;19:379–89.PubMedCrossRefGoogle Scholar
  8. 8.
    Hicks SD, DeFranco DB, Callaway CW. Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. Journal of Cerebral Blood Flow and Metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2000;20:520–30.Google Scholar
  9. 9.
    D'Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway CW. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. Journal of Cerebral Blood Flow and Metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2002;22:843–51.Google Scholar
  10. 10.
    2005 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2005;112:IV1–203.Google Scholar
  11. 11.
    Brooks SC, Morrison LJ. Implementation of therapeutic hypothermia guidelines for post-cardiac arrest syndrome at a glacial pace: seeking guidance from the knowledge translation literature. Resuscitation. 2008;77:286–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Metz C, Holzschuh M, Bein T, Woertgen C, Frey A, Frey I, et al. Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J Neurosurg. 1996;85:533–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Karibe H, Zarow GJ, Graham SH, Weinstein PR. Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 1994;14:620–7.Google Scholar
  14. 14.
    Maier CM, Sun GH, Cheng D, Yenari MA, Chan PH, Steinberg GK. Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia. Neurobiol Dis. 2002;11:28–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawai N, Kawanishi M, Okauchi M, Nagao S. Effects of hypothermia on thrombin-induced brain edema formation. Brain Res. 2001;895:50–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Guluma KZ, Oh H, Yu SW, Meyer BC, Rapp K, Lyden PD. Effect of endovascular hypothermia on acute ischemic edema: morphometric analysis of the ictus trial. Neurocrit Care. 2008;8:42–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwab S, Georgiadis D, Berrouschot J, Schellinger PD, Graffagnino C, Mayer SA. Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke; J Cereb Circ. 2001;32:2033–5.CrossRefGoogle Scholar
  18. 18.
    Krieger DW, De Georgia MA, Abou-Chebl A, Andrefsky JC, Sila CA, Katzan IL, et al. Cooling for acute ischemic brain damage (cool aid): an open pilot study of induced hypothermia in acute ischemic stroke. Stroke; J Cereb Circ. 2001;32:1847–54.CrossRefGoogle Scholar
  19. 19.
    Lazzaro MA, Prabhakaran S. Induced hypothermia in acute ischemic stroke. Expt Opin Investig Drugs. 2008;17:1161–74.CrossRefGoogle Scholar
  20. 20.
    Gillies MA, Pratt R, Whiteley C, Borg J, Beale RJ, Tibby SM. Therapeutic hypothermia after cardiac arrest: a retrospective comparison of surface and endovascular cooling techniques. Resuscitation. 2010;81:1117–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Qiu W, Shen H, Zhang Y, Wang W, Liu W, Jiang Q, et al. Noninvasive selective brain cooling by head and neck cooling is protective in severe traumatic brain injury. J Clin Neurosci. 2006;13:995–1000.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang H, Olivero W, Lanzino G, Elkins W, Rose J, Honings D, et al. Rapid and selective cerebral hypothermia achieved using a cooling helmet. J Neurosurg. 2004;100:272–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Keller E, Mudra R, Gugl C, Seule M, Mink S, Frohlich J. Theoretical evaluations of therapeutic systemic and local cerebral hypothermia. J Neurosci Methods. 2009;178:345–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Zweifler RM, Voorhees ME, Mahmood MA, Alday DD. Induction and maintenance of mild hypothermia by surface cooling in nonintubated subjects. J Stroke Cerebrovasc Dis. 2003;12:237–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Castren M, Nordberg P, Svensson L, Taccone F, Vincent JL, Desruelles D, et al. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (prince: Pre-rosc intranasal cooling effectiveness). Circulation. 2010;122:729–36.PubMedCrossRefGoogle Scholar
  26. 26.•
    Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ictus-l). Final results. Stroke. 2010;41:2265–70.PubMedCrossRefGoogle Scholar
  27. 27.
    De Georgia MA, Krieger DW, Abou-Chebl A, Devlin TG, Jauss M, Davis SM, et al. Cooling for acute ischemic brain damage (cool aid): a feasibility trial of endovascular cooling. Neurology. 2004;63:312–7.PubMedCrossRefGoogle Scholar
  28. 28.•
    Lyden P, Ernstrom K, Cruz-Flores S, Gomes J, Grotta J, Mullin A, et al. Determinants of effective cooling during endovascular hypothermia. Neurocrit Care. 2012;16:413–20.PubMedCrossRefGoogle Scholar
  29. 29.
    van der Worp HB, Macleod MR, Kollmar R. Therapeutic hypothermia for acute ischemic stroke: ready to start large randomized trials? J Cereb Blood Flow Metab. 2010;30:1079–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Mack WJ, Huang J, Winfree C, Kim G, Oppermann M, Dobak J, et al. Ultrarapid, convection-enhanced intravascular hypothermia: a feasibility study in nonhuman primate stroke. Stroke. 2003;34:1994–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Flint AC, Hemphill JC, Bonovich DC. Therapeutic hypothermia after cardiac arrest: performance characteristics and safety of surface cooling with or without endovascular cooling. Neurocrit Care. 2007;7:109–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Georgiadis D, Schwarz S, Kollmar R, Schwab S. Endovascular cooling for moderate hypothermia in patients with acute stroke: first results of a novel approach. Stroke. 2001;32:2550–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Jessen K. An assessment of human regulatory nonshivering thermogenesis. Acta Anaesthesiol Scand. 1980;24:138–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Kranke P, Eberhart LH, Roewer N, Tramer MR. Pharmacological treatment of postoperative shivering: a quantitative systematic review of randomized controlled trials. Anesth Analg. 2002;94:453–60. table of contents.PubMedGoogle Scholar
  35. 35.
    Weant KA, Martin JE, Humphries RL, Cook AM. Pharmacologic options for reducing the shivering response to therapeutic hypothermia. Pharmacotherapy 30:830–41.Google Scholar
  36. 36.
    Miyazawa T, Tamura A, Fukui S, Hossmann KA. Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies. Neurol Res. 2003;25:457–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Adelson PD, Ragheb J, Kanev P, Brockmeyer D, Beers SR, Brown SD, et al. Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery. 2005;56:740–54; discussion 740–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Jaramillo A, Gongora-Rivera F, Labreuche J, Hauw JJ, Amarenco P. Predictors for malignant middle cerebral artery infarctions: a postmortem analysis. Neurology. 2006;66:815–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Krieger DW, Demchuk AM, Kasner SE, Jauss M, Hantson L. Early clinical and radiological predictors of fatal brain swelling in ischemic stroke. Stroke. 1999;30:287–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Barber PA, Demchuk AM, Zhang J, Kasner SE, Hill MD, Berrouschot J, et al. Computed tomographic parameters predicting fatal outcome in large middle cerebral artery infarction. Cerebrovasc Dis. 2003;16:230–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Delgado P, Sahuquillo J, Poca MA, Alvarez-Sabin J. Neuroprotection in malignant mca infarction. Cerebrovasc Dis. 2006;21 Suppl 2:99–105.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen H, Chopp M, Welch KM. Effect of mild hyperthermia on the ischemic infarct volume after middle cerebral artery occlusion in the rat. Neurology. 1991;41:1133–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang RL, Chopp M, Chen H, Garcia JH, Zhang ZG. Postischemic (1 hour) hypothermia significantly reduces ischemic cell damage in rats subjected to 2 hours of middle cerebral artery occlusion. Stroke. 1993;24:1235–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab. 1993;13:541–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Colbourne F, Corbett D. Delayed postischemic hypothermia: a 6 month survival study using behavioral and histological assessments of neuroprotection. J Neurosci. 1995;15:7250–60.PubMedGoogle Scholar
  46. 46.
    Yanamoto H, Nagata I, Nakahara I, Tohnai N, Zhang Z, Kikuchi H. Combination of intraischemic and postischemic hypothermia provides potent and persistent neuroprotection against temporary focal ischemia in rats. Stroke. 1999;30:2720–6; discussion 2726.PubMedCrossRefGoogle Scholar
  47. 47.
    Colbourne F, Li H, Buchan AM. Indefatigable ca1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab. 1999;19:742–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008;371:1955–69.PubMedCrossRefGoogle Scholar
  49. 49.
    Kammersgaard LP, Rasmussen BH, Jorgensen HS, Reith J, Weber U, Olsen TS. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: a case-control study: the copenhagen stroke study. Stroke; J Cereb Circ. 2000;31:2251–6.CrossRefGoogle Scholar
  50. 50.
    Sydenham E, Roberts I, Alderson P. Hypothermia for traumatic head injury. Cochrane Database Syst Rev. 2009:CD001048.Google Scholar
  51. 51.
    Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, et al. Very early hypothermia induction in patients with severe brain injury (the national acute brain injury study: Hypothermia II): a randomized trial. Lancet Neurol. 2011;10:131–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of NeurologyCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations