Current Treatment Options in Neurology

, Volume 14, Issue 4, pp 332–347

Seizure Treatment in Transplant Patients

EPILEPSY (E WATERHOUSE, SECTION EDITOR)

Opinion statement

Solid organ transplantation is frequently complicated by a spectrum of seizure types, including single partial-onset or generalized tonic-clonic seizures, acute repetitive seizures or status epilepticus, and sometimes the evolution of symptomatic epilepsy. There is currently no specific evidence involving the transplant patient population to guide the selection, administration, or duration of antiepileptic drug (AED) therapy, so familiarity with clinical AED pharmacology and application of sound judgment are necessary for successful patient outcomes. An initial detailed search for symptomatic seizure etiologies, including metabolic, infectious, cerebrovascular, and calcineurin inhibitor treatment-related neurotoxic complications such as posterior reversible encephalopathy syndrome (PRES), is imperative, as underlying central nervous system disorders may impose additional serious risks to cerebral or general health if not promptly detected and appropriately treated. The mainstay for post-transplant seizure management is AED therapy directed toward the suspected seizure type. Unfavorable drug interactions could place the transplanted organ at risk, so choosing an AED with limited interaction potential is also crucial. When the transplanted organ is dysfunctional or vulnerable to rejection, AEDs without substantial hepatic metabolism are favored in post-liver transplant patients, whereas after renal transplantation, AEDs with predominantly renal elimination may require dosage adjustment to prevent adverse effects. Levetiracetam, gabapentin, pregabalin, and lacosamide are drugs of choice for treatment of partial-onset seizures in post-transplant patients given their efficacy spectrum, generally excellent tolerability, and lack of drug interaction potential. Levetiracetam is the drug of choice for primary generalized seizures in post-transplant patients. When intravenous drugs are necessary for acute seizure management, benzodiazepines and fosphenytoin are the traditional and best evidence-based options, although intravenous levetiracetam, valproate, and lacosamide are emerging options. Availability of several newer AEDs has greatly expanded the therapeutic armamentarium for safe and efficacious treatment of post-transplant seizures, but future prospective clinical trials and pharmacokinetic studies within this specific patient population are needed.

Keywords

Transplant Seizure Epilepsy Status epilepticus Acute repetitive seizures Posterior reversible encephalopathy syndrome PRES Infection Antiepileptic drugs Cyclosporine toxicity Tacrolimus toxicity Treatment 

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Organ Procurement and Transplant Network, US. Based on OPTN data as of February 2012.Google Scholar
  2. 2.
    National Marrow Donor Program® Key Messages, Facts & Figures. Available at http://marrow.org/News/Media/Facts_and_Figures_(PDF).aspx. Accessed February 2012.
  3. 3.
    Mor E, Jennings L, Gonwa TA, et al. The impact of operative bleeding on outcome in transplantation of the liver. Surg Gynecol Obstet. 1993;176(3):219–27.PubMedGoogle Scholar
  4. 4.
    Boylan JF, Klinck JR, Sandler AN, et al. Tranexamic acid reduces blood loss, transfusion requirements, and coagulation factor use in primary orthotopic liver transplantation. Anesthesiol. 1996;85(5):1043–8.CrossRefGoogle Scholar
  5. 5.
    Karkouti K, Wijeysundera DN, Yau TM, et al. The independent association of massive blood loss with mortality in cardiac surgery. Transfusion. 2004;44(10):1453–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Mannucci PM, Levi M. Prevention and treatment of major blood loss. N Engl J Med. 2007;356(22):2301–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Fishman JA, Rubin RH. Infection in organ-transplant recipients. N Engl J Med. 1998;338(24):1741–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Conti DJ, Rubin RH. Infection of the central nervous system in organ transplant patients. Neurol Clin. 1988;6(2):241–60.PubMedGoogle Scholar
  9. 9.
    Hooper DC, Pruitt AA, Rubin RH. Central nervous system infections in the chronically immunosuppressed. Medicine (Baltimore). 1982;61(3):166–88.Google Scholar
  10. 10.
    Bonham CA, Dominguez EA, Fukui MB, et al. Central nervous system lesions in liver transplant recipients: prospective assessment of indications for biopsy and implications for management. Transplantation. 1998;66(12):1596–604.PubMedCrossRefGoogle Scholar
  11. 11.
    Martinez AJ, Puglia J. The neuropathology of liver, heart, and heart–lung transplantation. Transplant Proc. 1988;20(1 Suppl 1):806–9.PubMedGoogle Scholar
  12. 12.
    Selby R, Ramirez CB, Singh R, et al. Brain abscess in solid organ transplant recipients receiving cyclosporine-based immunosuppression. Arch Surg. 1997;132:304–10.PubMedCrossRefGoogle Scholar
  13. 13.••
    Marco S, Cecilia F, Patrizia B. Neurologic complications after solid organ transplantation. Transpl Int. 2008;22(3):269–78.PubMedCrossRefGoogle Scholar
  14. 14.
    Singh N, Husain S. Infections of the central nervous system in transplant recipients. Transpl Infect Dis. 2000;2:101–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Wiesner RH, Demetris AJ, Belle SH. Acute hepatic allograft rejection: incidence, risk factors, and impact on outcome. Hepatology. 1998;28(3):638–45.PubMedCrossRefGoogle Scholar
  16. 16.
    Sankaran D, Asderakis A, Ashraf S, et al. Cytokine gene polymorphisms predict acute rejection following renal transplantation. Kidney Int. 1999;56:281–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Pascual M, Theruvath T, Kawai T, et al. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med. 2002;346(8):580–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Gijtenbeek JM, van den Bent MJ, Vecht CJ. Cyclosporine neurotoxicity: a review. J Neurol. 1999;246(5):339–46.PubMedCrossRefGoogle Scholar
  19. 19.
    De Groen PC. Cyclosporine: a review and its specific use in liver transplantation. Mayo Clin Proc. 1989;64(6):680–9.PubMedGoogle Scholar
  20. 20.
    Teh LK, Dom SH, Zakaria ZA, et al. A systematic review of the adverse effects of tacrolimus in organ transplant patients. Afr J Pharm Pharmacol. 2011;4(6):764–71.Google Scholar
  21. 21.
    Wijdicks EF, Plevek DJ, Wiesner RH, et al. Causes and outcome of seizures in liver transplant recipients. Neurology. 1996;47:1523–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Hinchey J, Chaves C, Appignani B, et al. A reversible posterior leukoencephalopathy syndrome. N Engl J Med. 1996;334(8):494–500.PubMedCrossRefGoogle Scholar
  23. 23.
    Lacerda G, Krummel T, Sabourdi C, et al. Optimizing therapy of seizures in patients with renal or hepatic dysfunction. Neurology. 2006;67(12 Suppl 4):S28–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Conti DJ, Rubin RH. Infection of the central nervous system in organ transplant patients. Neurol Clin. 1988;6(2):241–60.PubMedGoogle Scholar
  25. 25.
    Sarnaik AP, Meert K, Hackbarth R, et al. Management of hyponatremic seizures in children with hypertonic saline: a safe and effective strategy. Crit Care Med. 1991;19:758–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Thompson CB, June CH, Sullivan KM, et al. Association between cyclosporin neurotoxicity and hypomagnesaemia. Lancet. 1984;2:1116–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Nozue T, Kobayashi A, Sako A. Evidence that cyclosporine causes both intracellular migration and inappropriate urinary excretion of magnesium in rats. Transplantation. 1993;55(2):346–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Wells TG, Ulstrom RA, Nevins TE. Hypoglycemia in pediatric renal allograft recipients. J Pediatr. 1988;113(6):1002–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Bartynski WS, Tan HP, Boardman JF, et al. Posterior reversible encephalopathy syndrome after solid organ transplantation. AJNR Am J Neuroradiol. 2008;29(5):924–30.PubMedCrossRefGoogle Scholar
  31. 31.•
    Bartynski WS. Posterior reversible encephalopathy syndrome, part 1: fundamental imaging and clinical features. Am J Neuroradiol. 2008;29(6):1036–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Balderramo D, Prieto J, Cardenas A, et al. Hepatic encephalopathy and post-transplant hyponatremia predict early calcineurin inhibitor-induced neurotoxicity after liver transplantation. Transpl Int. 2011;24(8):812–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hinchey J. Reversible posterior leukoencephalopathy syndrome: what have we learned in the last 10 years? Arch Neurol. 2008;65(2):175–6.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Sullivan DP. Convulsions associated with cyclosporin A. Br Med J (Clin Res Ed). 1985;290(6471):858.CrossRefGoogle Scholar
  35. 35.
    Wijdicks EF. Neurotoxicity of immunosuppressive drugs. Liver Transpl. 2001;7(11):937–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Mueller AR, Platz KP, Bechstein WO, et al. Neurotoxicity after orthotopic liver transplantation. A comparison between cyclosporine and FK506. Transplantation. 1994;58(2):155–70.PubMedGoogle Scholar
  37. 37.
    Appleton RE, Farrell K, Teal P, et al. Complex partial status epilepticus associated with cyclosporin A therapy. J Neurol Neurosurg Psychiatry. 1989;52(9):1068–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Skiba V, Etienne M, Miller JA. Development of chronic epilepsy after recurrent episodes of posterior reversible encephalopathy syndrome associated with periodic lateralized discharges. Seizure. 2011;20(1):93–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Baldini M, Bartolini B, Gori S, et al. Epilepsy after neuroimaging in a woman with tacrolimus-related posterior reversible encephalopathy syndrome. Epilepsy Behav. 2010;17(4):558–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Gaggero R, Haupt R, Paola Fondelli M, et al. Intractable epilepsy secondary to cyclosporine toxicity in children undergoing allogeneic hematopoietic bone marrow transplantation. J Child Neurol. 2006;21(10):861–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Vizzini G, Asaro M, Miraglia R, et al. Changing picture of central nervous system complications in liver transplant recipients. Liver Transpl. 2011;17(11):1279–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Garnett WR, St. Louis EK, Henry TR, et al. Transitional polytherapy: tricks of the trade for monotherapy to monotherapy antiepileptic drug conversions. Curr Neuropharmacol. 2009;7(2):83–95.PubMedCrossRefGoogle Scholar
  43. 43.
    St. Louis EK. Minimizing AED adverse effects: improving quality of life in the interictal state in epilepsy care. Curr Neuropharmacol. 2009;7(2):106–14.PubMedCrossRefGoogle Scholar
  44. 44.
    St. Louis EK. From mono- to polytherapy: antiepileptic drug conversions through the spectrum of epilepsy care. Curr Neuropharmacol. 2009;7(2):75–6.PubMedCrossRefGoogle Scholar
  45. 45.
    St. Louis EK, Rosenfeld WE, Bramley T. Antiepileptic drug monotherapy: the initial approach in epilepsy management. Curr Neuropharmacol. 2009;7(2):77–82.PubMedCrossRefGoogle Scholar
  46. 46.
    St. Louis EK. Truly “rational” polytherapy: maximizing efficacy and minimizing drug interactions, drug load, and adverse effects. Curr Neuropharmacol. 2009;7(2):96–105.PubMedCrossRefGoogle Scholar
  47. 47.
    St Louis EK. The art of managing conversions between antiepileptic drugs: maximizing patient tolerability and quality of life. Pharmaceuticals (Basel). 2010;3(9):2956–69.Google Scholar
  48. 48.
    Chabolla DR, Wszolek ZK. Pharmacologic management of seizures in organ transplant. Neurology. 2006;67(12 Suppl 4):S34–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Grigg MM, Costanzo-Nordin MR, Celesia GG, et al. The etiology of seizures after cardiac transplantation. Transplant Proc. 1988;20 Suppl 3:937–44.PubMedGoogle Scholar
  50. 50.
    St. Louis EK, Gidal BE, Henry TR, et al. Conversions between monotherapies in epilepsy: expert consensus. Epilepsy Behav. 2007;11(2):222–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Saf. 1997;16(4):267–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Hillebrand G, Castro LA, van Scheidt W, et al. Valproate for epilepsy in renal transplant recipients receiving cyclosporine. Transplantation. 1987;43(6):915–6.PubMedGoogle Scholar
  53. 53.
    Cotarlu D, Zaldman JL. Valproic acid and the liver. Clin Chem. 1988;34(5):890–7.Google Scholar
  54. 54.
    Scheffner D, König S, Rauterberg-Ruland I, et al. Fatal liver failure in 16 children with valproate therapy. Epilepsia. 1988;29(5):530–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Le Bihan G, Bourreille J, Sampson M, et al. Fatal hepatic failure and sodium valproate. Lancet. 1980;316(8207):1298–9.CrossRefGoogle Scholar
  56. 56.
    Chabrol B, Mansini J, Chretien D, et al. Valproate-induced hepatic failure in a case of cytochrome C oxidase deficiency. Eur J Pediatr. 1994;153(2):133–5.PubMedGoogle Scholar
  57. 57.
    Brodie MJ, Perucca E, Ryvlin P, et al. Comparison of levetiracetam and controlled-release carbamazepine in newly diagnosed epilepsy. Neurology. 2007;68(6):402–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Franzoni E, Sarajlija J, Garone C, et al. No kinetic interaction between levetiracetam and cyclosporine. J Child Neurol. 2007;22(4):440–2.PubMedCrossRefGoogle Scholar
  59. 59.
    French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2004;62(8):1261–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Patsalos PN. Pharmacokinetic profile of levetiracetam: toward ideal characteristics. Pharmacol Ther. 2000;85(2):77–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Smith BJ, St. Louis EK, Stern JM, et al. Concerns with AED conversion: comparison of patient and physician perspectives. Curr Neuropharmacol. 2009;7(2):120–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Kaufman DW, Kelly JP, Anderson T, et al. An evaluation of case reports of aplastic anemia among individuals using felbamate. Epilepsia. 1997;38(12):1265–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Pellock JM, Brodie MJ. Felbamate: 1997 update. Epilepsia. 1997;38(12):1261–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Wild JM, Chiron C, Ahn H, et al. Visual field loss in patients with refractory partial epilepsy treated with vigabatrin: final results from an open-label, observational, multicentre study. CNS Drugs. 2009;23(11):965–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Chabolla DR, Harnois DM, Meschia JF. Levetiracetam monotherapy for liver transplant patients with seizures. Transplant Proc. 2003;35(4):1480–1.PubMedCrossRefGoogle Scholar
  66. 66.
    Glass GA, Stankiewicz J, Mithoefer A, et al. Levetiracetam for seizures after liver transplantation. Neurology. 2005;64(6):1084–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Meehan AL, Yang X, McAdams BD, et al. A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam. J Neurophysiol. 2011;106(3):1227–39.PubMedCrossRefGoogle Scholar
  68. 68.
    Nicolas JM, Collart P, Gerin B, et al. In vitro evaluation of potential drug interactions with levetiracetam, a new antiepileptic agent. Drug Metab Dispos. 1999;27(2):250–4.PubMedGoogle Scholar
  69. 69.
    FDA Website.Google Scholar
  70. 70.
    Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2003;2(6):347–56.PubMedCrossRefGoogle Scholar
  71. 71.
    LaRoche SM. A new look at the second-generation antiepileptic drugs. Neurologist. 2007;13(3):133–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Misra UK, Kalita J, Maurya PK. Levetiracetam versus lorazepam in status epilepticus: a randomized, open labeled pilot study. J Neurol. 2011 [Epub ahead of print].Google Scholar
  73. 73.
    Ramael S, De Smedt F, Toublanc N, et al. Single-dose bioavailability of levetiracetam intravenous infusion relative to oral tablets and multiple-dose pharmacokinetics and tolerability of levetiracetam intravenous infusion compared with placebo in healthy subjects. Clin Ther. 2006;28(5):734–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Navarro V, Dagron C, Demeret S, et al. A prehospital randomized trial in convulsive status epilepticus. Epilepsia. 2011;52 Suppl 8:48–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia. 2004;45 Suppl 6:13–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Bergey GK, Morris HH, Rosenfeld W, et al. Gabapentin monotherapy: I. An 8-day, double-blind, dose-controlled, multicenter study in hospitalized patients with refractory complex partial or secondarily generalized seizures. The US Gabapentin Study Group 88/89. Neurology. 1997;49(3):739–45.PubMedCrossRefGoogle Scholar
  77. 77.
    Sendra JM, Junyent TT, Pellicer MJ. Pregabalin-induced hepatotoxicity. Ann Pharmacother. 2011;45(6):e32.PubMedCrossRefGoogle Scholar
  78. 78.
    Doğan S, Ozberk S, Yurci A. Pregabalin-induced hepatotoxicity. Eur J Gastroenterol Hepatol. 2011;23(7):628.PubMedCrossRefGoogle Scholar
  79. 79.
    Harris JA, Murphy JA. Lacosamide: an adjunctive agent for partial-onset seizures and potential therapy for neuropathic pain. Ann Pharmacother. 2009;43(11):1809–17.PubMedCrossRefGoogle Scholar
  80. 80.
    Ben-Menachem E, Biton V, Jatuzis D, et al. Efficacy and safety of oral lacosamide as adjunctive therapy in adults with partial-onset seizures. Epilepsia. 2007;48(7):1308–17.PubMedCrossRefGoogle Scholar
  81. 81.
    Thomas D, Scharfenecker U, Schiltmeyer B, et al. Low potential for drug-drug interaction of lacosamide. Epilepsia. 2006;47 Suppl 4:200.Google Scholar
  82. 82.
    Bleck TP. Intensive care unit management of patients with status epilepticus. Epilepsia. 2007;48 Suppl 8:59–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Leppik IE, Derivan AT, Homan RW, et al. Double-blind study of lorazepam and diazepam in status epilepticus. JAMA. 1983;249(11):1452–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Treiman DM, Meyers PD, Walton NY, et al. A comparison of four treatments for generalized convulsive status epilepticus. N Engl J Med. 1998;339(12):792–8.PubMedCrossRefGoogle Scholar
  85. 85.
    D’Souza MJ, Pollock SH, Solomon HM. Cyclosporine-phenytoin interaction. Drug Metab Dispos. 1988;16(2):256–8.PubMedGoogle Scholar
  86. 86.
    Boucher BA, Feler CA, Dean JC, et al. The safety, tolerability, and pharmacokinetics of fosphenytoin after intramuscular and intravenous administration in neurosurgery patients. Pharmacotherapy. 1996;16(4):638–45.PubMedGoogle Scholar
  87. 87.
    Ramsay RE, Wilder BJ, Uthman BM, et al. Intramuscular fosphenytoin (Cerebyx) in patients requiring a loading dose of phenytoin. Epilepsy Res. 1997;28(3):181–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Wilder BJ, Campbell K, Ramsay RE, et al. Safety and tolerance of multiple doses of intramuscular fosphenytoin substituted for oral phenytoin in epilepsy or neurosurgery. Arch Neurol. 1996;53(8):764–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Morita DA, Glauser TA. Phenytoin and fosphenytoin. In: Wyllie E, editor. The treatment of epilepsy: principles and practice. Philadelphia: Williams & Wilkins; 2005. p. 785–803.Google Scholar
  90. 90.
    Aweeka FT, Gottwald MD, Gambertoglio JG, et al. Pharmacokinetics of fosphenytoin in patients with hepatic or renal disease. Epilepsia. 1999;40(6):777–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Boggs JG. Seizures in medically complex patients. Epilepsia. 1997;38 Suppl 4:S55–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Rossetti AO, Lowenstein DH. Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol. 2011;10(10):922–30.PubMedCrossRefGoogle Scholar
  93. 93.
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Kwan P, Sander JW. The natural history of epilepsy: an epidemiological view. J Neurol Neurosurg Psychiatry. 2004;75(10):1376–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Sillanpää M, Schmidt D. Natural history of treated childhood-onset epilepsy: prospective long term population-based study. Brain. 2006;129(3):617–24.PubMedCrossRefGoogle Scholar
  96. 96.
    Wiebe S, Blume WT, Girvin JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Morris 3rd GL, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. Neurology. 1999;53(8):1731–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Cramer J. Exploration of changes in health-related quality of life after 3 months of vagus nerve stimulation. Epilepsy Behav. 2001;2(5):460–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Labar DR. Antiepileptic drug use during the first 12 months of vagus nerve stimulation therapy: a registry study. Neurology. 2002;59(6 Suppl 4):S38–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Freeman JM, Kossoff EH, Hartman AL. The ketogenic diet: one decade later. Pediatrics. 2007;119(3):535–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Wilder RM. The effect of ketonemia on the course of epilepsy. Mayo Clin Bull. 1921;2:307–8.Google Scholar
  102. 102.
    Freeman JM, Vining EP, Pillas DJ, et al. The efficacy of the ketogenic diet—1998: a prospective evaluation of intervention in 150 children. Pediatrics. 1998;102(6):1358–63.PubMedCrossRefGoogle Scholar
  103. 103.
    Hemingway C, Freeman JM, Pillas DJ, et al. The ketogenic diet: a 3- to 6-year follow-up of 150 children enrolled prospectively. Pediatrics. 2001;108(4):898–905.PubMedCrossRefGoogle Scholar
  104. 104.
    Kossoff EH, McGrogan JR, Bluml RM, et al. A modified atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia. 2006;47(2):421–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Kossoff EH, Rowley H, Sinha SR, et al. A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia. 2008;49(2):316–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Sirven J, Whedon B, Caplan D, et al. The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia. 2005;40(12):1721–6.CrossRefGoogle Scholar
  107. 107.
    St Louis EK. Diagnosing and treating co-morbid sleep apnea in neurological disorders; part 1. Pract Neurol (Fort Wash Pa). 2010;9(4):26–30.Google Scholar
  108. 108.
    St. Louis EK. Diagnosing and treating co-morbid sleep apnea in neurological disorders; part 2. Pract Neurol (Fort Wash Pa). 2010;9(5):26–31.Google Scholar
  109. 109.
    St Louis EK. Sleep and epilepsy: strange bedfellows no more. Minerva Pneumol. 2011;50(3):159–76.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departments of Neurology and MedicineMayo Clinic and FoundationRochesterUSA

Personalised recommendations