Current Treatment Options in Neurology

, Volume 14, Issue 1, pp 50–59 | Cite as

New Agents for Acute Treatment of Migraine: CGRP Receptor Antagonists, iNOS Inhibitors

Headache (JR Couch, Section Editor)

Opinion statement

The treatment of migraine was advanced dramatically with the introduction of triptans in the early 1990s. Despite the substantial improvement in the quality of life that triptans have brought to many migraineurs, a substantial cohort of patients remain highly disabled by attacks and need new therapeutic approaches, which ideally should be quick-acting, have no vasoconstrictor activity, and have a longer duration of action and be better tolerated than current therapies. The calcitonin gene-related peptide (CGRP) receptor antagonists (gepants)—olcegepant (BIBN 4096 BS), telcagepant (MK-0974), MK3207, and BI 44370 TA—are effective in treating acute migraine. They have no vasoconstrictive properties, fewer adverse effects, and may act longer than triptans. Their development has been complicated by liver toxicity issues when used as preventives. Results from studies with BI 44370 TA do not support broad concern about a class effect, and further studies are ongoing in this respect. Many experimental studies and clinical trials suggest that nitric oxide may have a role in the pathophysiology of migraine. Therefore, the inhibition of nitric oxide synthase (NOS) for the acute or prophylactic treatment of migraine offered a feasible approach; as inducible NOS (iNOS) is involved in several pain states, such as inflammatory pain, it appeared to be an attractive target. However, despite high selectivity and potency, the iNOS inhibitor GW274150 was not effective for acute treatment or prophylaxis of migraine, suggesting that iNOS is very unlikely to be a promising target.


Migraine Treatment Drug therapy Pathophysiology CGRP receptor antagonists Calcitonin gene-related peptide Gepants Olcegepant BI 44370 TA Telcagepant Prophylaxis iNOS inhibitors GW274150 

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Stovner L, Hagen K, Jensen R, et al. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia. 2007;27(3):193–210.PubMedCrossRefGoogle Scholar
  2. 2.
    Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch Neurol. 2000;57(3):418–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Rasmussen BK, Jensen R, Schroll M, Olesen J. Epidemiology of headache in a general population-a prevalence study. J Clin Epidemiol. 1991;44(11):1147–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Silberstein SD, Lipton RB. Headache epidemiology. Emphasis on migraine. Neurol Clin. 1996;14(2):421–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Scher AI, Stewart WF, Liberman J, Lipton RB. Prevalence of frequent headache in a population sample. Headache. 1998;38(7):497–506.PubMedCrossRefGoogle Scholar
  6. 6.
    Lipton RB, Scher AI, Kolodner K, et al. Migraine in the United States: epidemiology and patterns of health care use. Neurology. 2002;58(6):885–94.PubMedGoogle Scholar
  7. 7.
    Robbins MS, Lipton RB. The epidemiology of primary headache disorders. Semin Neurol. 2010;30(2):107–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrari MD, Roon KI, Lipton RB, Goadsby PJ. Oral triptans (serotonin 5-HT(1B/1D) agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet. 2001;358(9294):1668–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol. 2010;6(10):573–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Goadsby PJ. The vascular theory of migraine - a great story wrecked by the facts. Brain. 2009;132(Pt 1):6–7.PubMedGoogle Scholar
  11. 11.
    Diener HC. Efficacy and safety of intravenous acetylsalicylic acid lysinate compared to subcutaneous sumatriptan and parenteral placebo in the acute treatment of migraine. A double-blind, double-dummy, randomized, multicenter, parallel group study. The ASASUMAMIG Study Group. Cephalalgia. 1999;19(6):581–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Limmroth V, May A, Diener H. Lysine-acetylsalicylic acid in acute migraine attacks. Eur Neurol. 1999;41(2):88–93.PubMedCrossRefGoogle Scholar
  13. 13.•
    Weatherall MW, Telzerow AJ, Cittadini E, et al. Intravenous aspirin (lysine acetylsalicylate) in the inpatient management of headache. Neurology 2010;75(12):1098–1103.PubMedCrossRefGoogle Scholar
  14. 14.•
    Diener HC, Barbanti P, Dahlof C, et al. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia 2011;31(5):573–584.PubMedCrossRefGoogle Scholar
  15. 15.
    Ho TW, Ferrari MD, Dodick DW, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Ho TW, Mannix LK, Fan X, et al. Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology. 2008;70(16):1304–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Nelson DL, Phebus LA, Johnson KW, et al. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia. 2010;30(10):1159–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Pilgrim AJ, Dussault B, Rupniak NMJ, et al. COL-144, an orally bioavailable selective 5-HT1F receptor agonist for acute migraine therapy. Cephalalgia. 2009;29:24–5.Google Scholar
  20. 20.
    Olesen J. 5-Hydroxyptryptamine 1F (5-HT1F) receptor agonism. A possible new treatment principle for acute migraine attacks. Cephalalgia. 2010;30(10):1157–8.PubMedCrossRefGoogle Scholar
  21. 21.••
    Ferrari MD, Farkkila M, Reuter U, et al. Acute treatment of migraine with the selective 5-HT1F receptor agonist lasmiditan--a randomised proof-of-concept trial. Cephalalgia 2010;30(10):1170–1178.PubMedCrossRefGoogle Scholar
  22. 22.
    Limmroth V, May A, Auerbach P, et al. Changes in cerebral blood flow velocity after treatment with sumatriptan or placebo and implications for the pathophysiology of migraine. J Neurol Sci. 1996;138(1–2):60–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Amara SG, Jonas V, Rosenfeld MG, et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982;298(5871):240–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Wimalawansa SJ. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev. 1996;17(5):533–85.PubMedGoogle Scholar
  25. 25.
    Tajti J, Uddman R, Moller S, et al. Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst. 1999;76(2–3):176–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Eftekhari S, Salvatore CA, Calamari A, et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience. 2010;169(2):683–96.PubMedCrossRefGoogle Scholar
  27. 27.
    Edvinsson L, Gulbenkian S, Barroso CP, et al. Innervation of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides. 1998;19(7):1213–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Hokfelt T, Arvidsson U, Ceccatelli S, et al. Calcitonin gene-related peptide in the brain, spinal cord, and some peripheral systems. Ann N Y Acad Sci. 1992;657:119–34.PubMedCrossRefGoogle Scholar
  29. 29.
    van Rossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev. 1997;21(5):649–78.PubMedCrossRefGoogle Scholar
  30. 30.
    Limmroth V, Katsarava Z, Liedert B, et al. An in vivo rat model to study calcitonin gene related peptide release following activation of the trigeminal vascular system. Pain. 2001;92(1–2):101–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Offenhauser N, Zinck T, Hoffmann J, et al. CGRP release and c-fos expression within trigeminal nucleus caudalis of the rat following glyceryltrinitrate infusion. Cephalalgia. 2005;25(3):225–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med. 2007;13(1):39–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33(1):48–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Lassen LH, Haderslev PA, Jacobsen VB, et al. CGRP may play a causative role in migraine. Cephalalgia. 2002;22(1):54–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Olesen J, Thomsen LL, Iversen H. Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci. 1994;15(5):149–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Aiyar N, Rand K, Elshourbagy NA, et al. A cDNA encoding the calcitonin gene-related peptide type 1 receptor. J Biol Chem. 1996;271(19):11325–9.PubMedCrossRefGoogle Scholar
  40. 40.
    McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393(6683):333–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Ma W, Chabot JG, Powell KJ, et al. Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience. 2003;120(3):677–94.PubMedCrossRefGoogle Scholar
  42. 42.
    Eftekhari S, Edvinsson L. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther Adv Neurol Disord. 2010;3(6):369–78.PubMedCrossRefGoogle Scholar
  43. 43.
    Oliver KR, Wainwright A, Edvinsson L, et al. Immunohistochemical localization of calcitonin receptor-like receptor and receptor activity-modifying proteins in the human cerebral vasculature. J Cereb Blood Flow Metab. 2002;22(5):620–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Lennerz JK, Ruhle V, Ceppa EP, et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol. 2008;507(3):1277–99.PubMedCrossRefGoogle Scholar
  45. 45.
    Ferrari MD, Goadsby PJ, Roon KI, Lipton RB. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia. 2002;22(8):633–58.PubMedCrossRefGoogle Scholar
  46. 46.••
    Connor KM, Shapiro RE, Diener HC, et al. Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology 2009;73(12):970–977.PubMedCrossRefGoogle Scholar
  47. 47.
    Edvinsson L, Ho TW. CGRP receptor antagonism and migraine. Neurotherapeutics. 2010;7(2):164–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Sur C, Hargreaves R, Bell I, et al. CSF levels and binding pattern of novel CGRP receptor antagonists in rhesus monkey and human central nervous system: toward the development of a PET tracer. Cephalalgia. 2009;29 Suppl 1:136–7. Abstract PO326.Google Scholar
  49. 49.•
    Ho AP, Dahlof CG, Silberstein SD, et al. Randomized, controlled trial of telcagepant over four migraine attacks. Cephalalgia 2010;30(12):1443–1457.PubMedCrossRefGoogle Scholar
  50. 50.•
    Ho TW, Olesen J, Dodick DW, et al. Antimigraine efficacy of telcagepant based on patient's historical triptan response. Headache 2011;51(1):64–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Ho T, Connor K, Dahlof C, et al. Assessment of the long term safety and tolerability of telcagepant for the intermittent treatment of acute migraine: a double-blind, active-controlled study. Cephalalgia. 2009;29 Suppl 1:12. Abstract PO03.Google Scholar
  52. 52.
    Connor KM, Aurora SK, Loeys T, et al. Long-term tolerability of telcagepant for acute treatment of migraine in a randomized trial. Headache. 2011;51(1):73–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Han TH, Blanchard RL, Palcza J, et al. Single- and multiple-dose pharmacokinetics and tolerability of telcagepant, an oral calcitonin gene-related peptide receptor antagonist, in adults. J Clin Pharmacol. 2010;50(12):1367–76.PubMedCrossRefGoogle Scholar
  54. 54.
    Merck, Merck Updates Status of Clinical Development Programs for Investigational CGRP Receptor Antagonist Treatments for Acute Migraine; MK-3207 Clinical Development Discontinued, Sept. 10, 2009, (Accessed May 10, 2011).
  55. 55.
    Salvatore CA, Moore EL, Hershey JC, et al. Pharmacological characterization of MK-3207, a potent and orally bioavailable CGRP receptor anagonist. Cephalalgia. 2009;29 Suppl 1:139. Abstract PO333.Google Scholar
  56. 56.
    Hewitt DJ, Aurora SK, Dodick DW, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia. 2011;31(6):712–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Chan KY, Edvinsson L, Eftekhari S, et al. Characterization of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) in human isolated coronary arteries. J Pharmacol Exp Ther. 2010;334(3):746–52.PubMedCrossRefGoogle Scholar
  58. 58.
    De Col R, Koulchitsky SV, Messlinger KB. Nitric oxide synthase inhibition lowers activity of neurons with meningeal input in the rat spinal trigeminal nucleus. Neuroreport. 2003;14(2):229–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Tassorelli C, Joseph SA. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. 1995;682(1–2):167–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Lambert GA, Hoskin KL, Zagami AS. Nitrergic and glutamatergic neuronal mechanisms at the trigeminovascular first-order synapse. Neuropharmacology. 2004;47(1):92–105.PubMedCrossRefGoogle Scholar
  61. 61.
    Jones MG, Lever I, Bingham S, et al. Nitric oxide potentiates response of trigeminal neurones to dural or facial stimulation in the rat. Cephalalgia. 2001;21(6):643–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett. 1999;266(3):173–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Akerman S, Williamson DJ, Kaube H, Goadsby PJ. Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br J Pharmacol. 2002;137(1):62–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Lin Q, Palecek J, Paleckova V, et al. Nitric oxide mediates the central sensitization of primate spinothalamic tract neurons. J Neurophysiol. 1999;81(3):1075–85.PubMedGoogle Scholar
  65. 65.
    Olesen J, Iversen HK, Thomsen LL. Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport. 1993;4(8):1027–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Headache Classification Subcommittee of the International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia. 2004;24 Suppl 1:9–160.Google Scholar
  67. 67.
    Christiansen I, Thomsen LL, Daugaard D, et al. Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia. 1999;19(7):660–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Koulchitsky S, Fischer MJ, De Col R, et al. Biphasic response to nitric oxide of spinal trigeminal neurons with meningeal input in rat–possible implications for the pathophysiology of headaches. J Neurophysiol. 2004;92(3):1320–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Afridi SK, Kaube H, Goadsby PJ. Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain. 2004;110(3):675–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Lassen LH, Ashina M, Christiansen I, et al. Nitric oxide synthase inhibition in migraine. Lancet. 1997;349(9049):401–2.PubMedCrossRefGoogle Scholar
  71. 71.
    Olesen J. Nitric Oxide-related drug targets in headache. Neurotherapeutics. 2010;7(2):183–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Alderton WK, Angell ADR, Craig C, et al. GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide synthase in vitro and in vivo. Brit J Pharmacol. 2005;145(3):301–12.CrossRefGoogle Scholar
  73. 73.
    De Alba J, Clayton NM, Collins SD, et al. GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (NOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain. 2006;120(1–2):170–81.PubMedCrossRefGoogle Scholar
  74. 74.•
    Palmer JE, Guillard FL, Laurijssens BE, et al. A randomised, single-blind, placebo-controlled, adaptive clinical trial of GW274150, a selective iNOS inhibitor, in the treatment of acute migraine. Cephalalgia 2009;29:124.Google Scholar
  75. 75.•
    Hoivik HO, Laurijssens BE, Harnisch LO, et al. Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia 2010;30(12):1458–67.PubMedCrossRefGoogle Scholar
  76. 76.
    Høye K. LB, Harnisch LO, Twomey CK, Dixon RM, Kirkham, Williams PM, Wentz AL. Efficacy and tolerability of the iNOS inhibitor GW274150 administered up to 120 mg daily for 12 weeks in the prophylactic treatment of migraine. Cephalalgia. 2009;29:132.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations