Recent Advances in the Treatment of Narcolepsy

  • Nobuhide Hirai
  • Seiji NishinoEmail author
Sleep Disorders

Opinion statement

A diagnosis of narcolepsy requires pharmacologic treatment in more than 90% of patients. Wake-promoting compounds are used to treat excessive daytime sleepiness (EDS), and anticataplectics are used for cataplexy. The treatment of EDS includes the use of amphetamine-like CNS stimulants (such as dextroamphetamine and methylphenidate), modafinil, and its R-enantiomer, armodafinil. Because of its high safety and low side-effect profiles, modafinil has become the first-line treatment of choice for EDS associated with narcolepsy. However, wake-promoting compounds do not improve cataplexy and dissociated manifestation of REM sleep, and so antidepressants (monoamine uptake inhibitors) are additionally used for the treatment of cataplexy and REM sleep abnormalities. Tricyclic antidepressants potently reduce REM sleep and thus have been used for the treatment of cataplexy and REM sleep abnormalities, but these have recently been replaced by more selective serotonin and/or noradrenaline uptake inhibitors with better side-effect profiles. As sodium oxybate (the approved formula of γ-hydroxybutyrate in the United States), given at night, improves both EDS and cataplexy, the number of US patients treated with sodium oxybate is increasing, while much progress has been made in understanding the modes of action of amphetamine-like CNS stimulants.


Atomoxetine Modafinil Excessive Daytime Sleepiness Narcolepsy Milnacipran 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No potential conflicts of interest relevant to this article were reported.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hublin C, Kaprio J, Partinen M, et al. The prevalence of narcolepsy: an epidemiological study of the Finnish Twin Cohort. Ann Neurol. 1994;35(6):709–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50(2 Suppl 1):S16–22.PubMedGoogle Scholar
  3. 3.
    Nishino S, Mignot E. Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol. 1997;52(1):27–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet. 2007;369(9560):499–511.PubMedCrossRefGoogle Scholar
  5. 5.
    Beusterien KM, Rogers AE, Walsleben JA, et al. Health-related quality of life effects of modafinil for treatment of narcolepsy. Sleep. 1999;22(6):757–65.PubMedGoogle Scholar
  6. 6.•
    Nishino S, Kotorii N. Overview of management of narcolepsy. In: Goswami M, Pandi-Perumal SR, Thorpy MJ, editors, Narcolepsy, a clinical guide. New York: Springer; 2010. p. 251–65.CrossRefGoogle Scholar
  7. 7.
    Association AN. Stimulant medication survey. The Eye Opener. 1992;1–3.Google Scholar
  8. 8.
    Morgenthaler TI, Kapur VK, Brown T, et al. Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. Sleep. 2007;30(12):1705–11.PubMedGoogle Scholar
  9. 9.
    Billiard M. Narcolepsy: current treatment options and future approaches. Neuropsychiatr Dis Treat. 2008;4(3):557–66.PubMedGoogle Scholar
  10. 10.
    Thorpy M. Therapeutic advances in narcolepsy. Sleep Med. 2007;8(4):427–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci. 2004;61(7–8):857–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Mitler MM, Aldrich MS, Koob GF, et al. Narcolepsy and its treatment with stimulants. ASDA standards of practice. Sleep. 1994;17(4):352–71.PubMedGoogle Scholar
  13. 13.
    Mitler MM, Hajdukovic R. Relative efficacy of drugs for the treatment of sleepiness in narcolepsy. Sleep. 1991;14(3):218–20.PubMedGoogle Scholar
  14. 14.
    Simpson LL. Blood pressure and heart rate responses produced by d-amphetamine: correlation with blood levels of drug. J Pharmacol Exp Ther. 1978;205(2):366–73.PubMedGoogle Scholar
  15. 15.
    Akimoto H, Honda Y, Takahashi Y. Pharmacotherapy in narcolepsy. Dis Nerv Syst. 1960;21:704–6.PubMedGoogle Scholar
  16. 16.
    Parkes JD, Baraitser M, Marsden CD, et al. Natural history, symptoms and treatment of the narcoleptic syndrome. Acta Neurol Scand. 1975;52(5):337–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Guilleminault C, Carskadon M, Dement WC. On the treatment of rapid eye movement narcolepsy. Arch Neurol. 1974;30(1):90–3.PubMedGoogle Scholar
  18. 18.
    Passouant P, Billiard M. Narcolepsy. Rev Prat. 1976;26(27):1917–23.PubMedGoogle Scholar
  19. 19.
    Rogers AE, Aldrich MS, Berrios AM, et al. Compliance with stimulant medications in patients with narcolepsy. Sleep. 1997;20(1):28–33.PubMedGoogle Scholar
  20. 20.
    Auger RR, Goodman SH, Silber MH, et al. Risks of high-dose stimulants in the treatment of disorders of excessive somnolence: a case-control study. Sleep. 2005;28(6):667–72.PubMedGoogle Scholar
  21. 21.
    Bastuji H, Jouvet M. Successful treatment of idiopathic hypersomnia and narcolepsy with modafinil. Prog Neuropsychopharmacol Biol Psychiatry. 1988;12(5):695–700.PubMedCrossRefGoogle Scholar
  22. 22.
    Besset A, Tafti M, Villemin E, et al. The effects of modafinil (300 mg) on sleep, sleepiness and arousal in narcoleptic patients. Neurophysiol Clin. 1993;23(1):47–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Boivin DB, Montplaisir J, Petit D, et al. Effects of modafinil on symptomatology of human narcolepsy. Clin Neuropharmacol. 1993;16(1):46–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Randomized trial of modafinil as a treatment for the excessive daytime somnolence of narcolepsy: US Modafinil in Narcolepsy Multicenter Study Group. Neurology. 2000;54(5):1166–75.Google Scholar
  25. 25.
    Broughton RJ, Fleming JA, George CF, et al. Randomized, double-blind, placebo-controlled crossover trial of modafinil in the treatment of excessive daytime sleepiness in narcolepsy. Neurology. 1997;49(2):444–51.PubMedGoogle Scholar
  26. 26.
    Hermant JF, Rambert FA, Duteil J. Awakening properties of modafinil: effect on nocturnal activity in monkeys (Macaca mulatta) after acute and repeated administration. Psychopharmacology (Berl). 1991;103(1):28–32.CrossRefGoogle Scholar
  27. 27.
    Gold LH, Balster RL. Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil. Psychopharmacology (Berl). 1996;126(4):286–92.CrossRefGoogle Scholar
  28. 28.
    Edgar DM, Seidel WF. Modafinil induces wakefulness without intensifying motor activity or subsequent rebound hypersomnolence in the rat. J Pharmacol Exp Ther. 1997;283(2):757–69.PubMedGoogle Scholar
  29. 29.
    Nishino S, Okuro M. Armodafinil for excessive daytime sleepiness. Drugs Today (Barc). 2008;44(6):395–414.CrossRefGoogle Scholar
  30. 30.
    Wong YN, Simcoe D, Hartman LN, et al. A double-blind, placebo-controlled, ascending-dose evaluation of the pharmacokinetics and tolerability of modafinil tablets in healthy male volunteers. J Clin Pharmacol. 1999;39(1):30–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Wong YN, King SP, Simcoe D, et al. Open-label, single-dose pharmacokinetic study of modafinil tablets: influence of age and gender in normal subjects. J Clin Pharmacol. 1999;39(3):281–8.PubMedGoogle Scholar
  32. 32.
    Robertson Jr P, Hellriegel ET. Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet. 2003;42(2):123–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Gonzalez MA, Pentikis HS, Anderl N, et al. Methylphenidate bioavailability from two extended-release formulations. Int J Clin Pharmacol Ther. 2002;40(4):175–84.PubMedGoogle Scholar
  34. 34.
    Iijima S, Sugita Y, Teshima Y, et al. Therapeutic effects of mazindol on narcolepsy. Sleep. 1986;9(1 Pt 2):265–8.PubMedGoogle Scholar
  35. 35.
    Nishino S, Mao J, Sampathkumaran R, et al. Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online. 1998;1(1):49–61.PubMedGoogle Scholar
  36. 36.
    Rye DB, Dihenia B, Bliwise DL. Reversal of atypical depression, sleepiness, and REM-sleep propensity in narcolepsy with bupropion. Depress Anxiety. 1998;7(2):92–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Thorpy MJ, Snyder M, Aloe FS, et al. Short-term triazolam use improves nocturnal sleep of narcoleptics. Sleep. 1992;15(3):212–6.PubMedGoogle Scholar
  38. 38.
    Scrima L, Hartman PG, Johnson Jr FH, et al. Efficacy of gamma-hydroxybutyrate versus placebo in treating narcolepsy-cataplexy: double-blind subjective measures. Biol Psychiatr. 1989;26(4):331–43.CrossRefGoogle Scholar
  39. 39.
    Broughton R, Mamelak M. The treatment of narcolepsy-cataplexy with nocturnal gamma-hydroxybutyrate. Can J Neurol Sci. 1979;6(1):1–6.PubMedGoogle Scholar
  40. 40.
    Chin MY, Kreutzer RA, Dyer JE. Acute poisoning from gamma-hydroxybutyrate in California. West J Med. 1992;156(4):380–4.PubMedGoogle Scholar
  41. 41.
    Mack RB. Love potion number 8 1/2. Gamma-hydroxybutyrate poisoning. N C Med J. 1993;54(5):232–3.PubMedGoogle Scholar
  42. 42.
    Wong CG, Gibson KM, Snead 3rd OC. From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci. 2004;25(1):29–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Nicholson KL, Balster RL. GHB: a new and novel drug of abuse. Drug Alcohol Depend. 2001;63(1):1–22.PubMedCrossRefGoogle Scholar
  44. 44.
    A 12-month, open-label, multicenter extension trial of orally administered sodium oxybate for the treatment of narcolepsy. Sleep. 2003;26(1):31–5.Google Scholar
  45. 45.
    Sodium oxybate demonstrates long-term efficacy for the treatment of cataplexy in patients with narcolepsy. Sleep Med. 2004;5(2):119–23.Google Scholar
  46. 46.
    A randomized, double blind, placebo-controlled multicenter trial comparing the effects of three doses of orally administered sodium oxybate with placebo for the treatment of narcolepsy. Sleep. 2002;25(1):42–9.Google Scholar
  47. 47.
    Xyrem International Study Group. A double-blind, placebo-controlled study demonstrates sodium oxybate is effective for the treatment of excessive daytime sleepiness in narcolepsy. J Clin Sleep Med. 2005;1(4):391–7.Google Scholar
  48. 48.
    Zvosec DL, Smith SW, Hall BJ. Three deaths associated with use of Xyrem. Sleep Med. 2009;10(4):490–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Sansa G, Iranzo A, Santamaria J. Obstructive sleep apnea in narcolepsy. Sleep Med. 2010;11(1):93–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Feldman NT. Clinical perspective: monitoring sodium oxybate-treated narcolepsy patients for the development of sleep-disordered breathing. Sleep Breath. 2010;14(1):77–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Li J, Stokes SA, Woeckener A. A tale of novel intoxication: seven cases of gamma-hydroxybutyric acid overdose. Ann Emerg Med. 1998;31(6):723–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Andriamampandry C, Taleb O, Viry S, et al. Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator gamma-hydroxybutyrate (GHB). FASEB J. 2003;17(12):1691–3.PubMedGoogle Scholar
  53. 53.••
    Nishino S. Modes of action of drugs related to narcolepsy: pharmacology of wake-promoting compounds and anticataplectics. In: Goswami M, Pandi-Perumal SR, and Thorpy MJ, editors. Narcolepsy a clinical guide. New York: Springer; 2010:267–86.CrossRefGoogle Scholar
  54. 54.
    Baldessarini RJ. How do antidepressants work? In: Davis JM, Mass JW, editors. The affective disorders. Washington DC: American Psychiatric Press; 1983. p. 243–60.Google Scholar
  55. 55.
    Langdon N, Shindler J, Parkes JD, et al. Fluoxetine in the treatment of cataplexy. Sleep. 1986;9(2):371–3.PubMedGoogle Scholar
  56. 56.
    Montplaisir J, Godbout R. Serotoninergic reuptake mechanisms in the control of cataplexy. Sleep. 1986;9(1 Pt 2):280–4.PubMedGoogle Scholar
  57. 57.
    Schrader H, Kayed K, Bendixen Markset AC, Treidene HE. The treatment of accessory symptoms in narcolepsy: a double-blind cross-over study of a selective serotonin re-uptake inhibitor (femoxetine) versus placebo. Acta Neurol Scand. 1986;74(4):297–303.PubMedCrossRefGoogle Scholar
  58. 58.
    Mignot E, Renaud A, Nishino S, et al. Canine cataplexy is preferentially controlled by adrenergic mechanisms: evidence using monoamine selective uptake inhibitors and release enhancers. Psychopharmacology (Berl). 1993;113(1):76–82.CrossRefGoogle Scholar
  59. 59.
    Nishino S, Arrigoni J, Shelton J, et al. Desmethyl metabolites of serotonergic uptake inhibitors are more potent for suppressing canine cataplexy than their parent compounds. Sleep. 1993;16(8):706–12.PubMedGoogle Scholar
  60. 60.
    Takahashi S. The action of tricyclics (alone or in combination with methylphenidate) upon several symptoms of narcolepsy. In: Guilleminault C, Dement WC, Passouant P, editors. Narcolepsy. New York: Spectrum Publication; 1976. p. 625–38.Google Scholar
  61. 61.
    Mamelak M, Scharf MB, Woods M. Treatment of narcolepsy with gamma-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep. 1986;9(1 Pt 2):285–9.PubMedGoogle Scholar
  62. 62.
    Lin JS. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev. 2000;4(5):471–503.PubMedCrossRefGoogle Scholar
  63. 63.
    Steininger TL, Alam MN, Gong H, et al. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res. 1999;840(1–2):138–47.PubMedCrossRefGoogle Scholar
  64. 64.
    Willie JT, Chemelli RM, Sinton CM, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron. 2003;38(5):715–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A. 2001;98(17):9965–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Kanbayashi T, Kodama T, Kondo H, et al. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep. 2009;32(2):181–7.PubMedGoogle Scholar
  67. 67.
    Nishino S, Sakurai E, Nevsimalova S, et al. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep. 2009;32(2):175–80.PubMedGoogle Scholar
  68. 68.
    Tedford CE, Edgar DM, Seidel WF, et al. Effects of a novel, selective, and potent histamine H3 receptor antagonist, GT-2331, on rat sleep-wakefulness and canine cataplexy [abstract]. Society for Neuroscience. 1999;25:460.3:32.Google Scholar
  69. 69.
    Lin JS, Sakai K, Vanni-Mercier G, et al. Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat. Brain Res. 1990;523(2):325–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Shiba T, Fujiki N, Wisor JP, et al. Wake promoting effects of thioperamide, a histamine H3 antagonist in orexin/ataxin-3 narcoleptic mice. Sleep. 2004;27(Supplement):A241–2.Google Scholar
  71. 71.
    Parmentier R, Anaclet C, Guhennec C, et al. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem Pharmacol. 2007;73(8):1157–71.PubMedCrossRefGoogle Scholar
  72. 72.
    Nishino S, Arrigoni J, Shelton J, et al. Effects of thyrotropin-releasing hormone and its analogs on daytime sleepiness and cataplexy in canine narcolepsy. J Neurosci. 1997;17(16):6401–8.PubMedGoogle Scholar
  73. 73.
    Heuer H, Schafer MK, O’Donnell D, et al. Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J Comp Neurol. 2000;428(2):319–36.PubMedCrossRefGoogle Scholar
  74. 74.
    Sharp T, Bennett GW, Marsden CA. Thyrotrophin-releasing hormone analogues increase dopamine release from slices of rat brain. J Neurochem. 1982;39(6):1763–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Keller HH, Bartholini G, Pletscher A. Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone. Nature. 1974;248(448):528–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Vogel HP, Benkert O, Illig R, et al. Psychoendocrinological and therapeutic effects of TRH in depression. Acta Psychiatr Scand. 1977;56(3):223–32.PubMedCrossRefGoogle Scholar
  77. 77.
    Bunevicius R, Matulevicius V. Short-lasting behavioural effects of thyrotropin-releasing hormone in depressed women: results of placebo-controlled study. Psychoneuroendocrinology. 1993;18(5–6):445–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Broberger C, McCormick DA. Excitatory effects of thyrotropin-releasing hormone in the thalamus. J Neurosci. 2005;25(7):1664–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Hara J, Gerashchenko D, Wisor JP, et al. Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci. 2009;29(12):3705–14.PubMedCrossRefGoogle Scholar
  80. 80.
    Gonzalez JA, Horjales-Araujo E, Fugger L, et al. Stimulation of orexin/hypocretin neurones by thyrotropin-releasing hormone. J Physiol. 2009;587(Pt 6):1179–86.PubMedCrossRefGoogle Scholar
  81. 81.
    Kotorii N, Okuro M, Takahashi S, et al. Effects of thyrotropin-releasing hormone analogs in the narcoleptic model mouse. Sleep. 2009;32(Supplement):A241.Google Scholar
  82. 82.
    Parmentier R, Kolbaev S, Klyuch BP, et al. Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci. 2009;29(14):4471–83.PubMedCrossRefGoogle Scholar
  83. 83.
    Schomburg L, Turwitt S, Prescher G, et al. Human TRH-degrading ectoenzyme cDNA cloning, functional expression, genomic structure and chromosomal assignment. Eur J Biochem. 1999;265(1):415–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Xu YL, Reinscheid RK, Huitron-Resendiz S, et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 2004;43(4):487–97.PubMedCrossRefGoogle Scholar
  85. 85.
    Porrino LJ, Daunais JB, Rogers GA, et al. Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLoS Biol. 2005;3(9):e299.PubMedCrossRefGoogle Scholar
  86. 86.
    Ehrman LA, Williams MT, Schaefer TL, et al. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav. 2006;5(7):540–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Okura M, Riehl J, Mignot E, et al. Sulpiride, a D2/D3 blocker, reduces cataplexy but not REM sleep in canine narcolepsy. Neuropsychopharmacology. 2000;23(5):528–38.PubMedCrossRefGoogle Scholar
  88. 88.
    Scrima L, Hartman PG, Johnson Jr FH, et al. The effects of gamma-hydroxybutyrate on the sleep of narcolepsy patients: a double-blind study. Sleep. 1990;13(6):479–90.PubMedGoogle Scholar
  89. 89.
    Huang YS, Guilleminault C. Narcolepsy: action of two gamma-aminobutyric acid type B agonists, baclofen and sodium oxybate. Pediatr Neurol. 2009;41(1):9–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Krogsgaard-Larsen P, Frolund B, Liljefors T, et al. GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol. 2004;68(8):1573–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Kastin AJ, Akerstrom V. Orexin A but not orexin B rapidly enters brain from blood by simple diffusion. J Pharmacol Exp Ther. 1999;289(1):219–23.PubMedGoogle Scholar
  92. 92.
    Yoshida Y, Fujiki N, Maki RA, et al. Differential kinetics of hypocretins in the cerebrospinal fluid after intracerebroventricular administration in rats. Neurosci Lett. 2003;346(3):182–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Fujiki N, Yoshida Y, Ripley B, et al. Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. Sleep. 2003;26(8):953–9.PubMedGoogle Scholar
  94. 94.
    Schatzberg SJ, Cutter-Schatzberg K, Nydam D, et al. The effect of hypocretin replacement therapy in a 3-year-old Weimaraner with narcolepsy. J Vet Intern Med. 2004;18(4):586–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Mieda M, Willie JT, Hara J, et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci U S A. 2004;101(13):4649–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Ripley B, Fujiki N, Okura M, et al. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol Dis. 2001;8(3):525–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.PubMedCrossRefGoogle Scholar
  98. 98.
    Hanson LR, Martinez PM, Taheri S, et al. Intranasal administration of hypocretin 1 (orexin A) bypasses the blood-brain barrier & targets the brain: a new strategy for the treatment of narcolepsy. Drug Deliv Tech. 2004;4(4):66–71.Google Scholar
  99. 99.
    Deadwyler SA, Porrino L, Siegel JM, et al. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci. 2007;27(52):14239–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Liu M, Thankachan S, Kaur S, et al. Orexin (hypocretin) gene transfer diminishes narcoleptic sleep behavior in mice. Eur J Neurosci. 2008;28(7):1382–93.PubMedCrossRefGoogle Scholar
  101. 101.
    Arias-Carrión O, Murillo-Rodriguez E, Xu M, et al. Transplantation of hypocretin neurons into the pontine reticular formation: preliminary results. Sleep. 2004;27(8):1465–70.PubMedGoogle Scholar
  102. 102.
    Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.PubMedCrossRefGoogle Scholar
  103. 103.
    Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.PubMedCrossRefGoogle Scholar
  104. 104.
    Neurobiology BA. Better cells for brain repair. Nature. 1993;362(6419):414–5.CrossRefGoogle Scholar
  105. 105.
    Asahi S, Egashira S, Matsuda M, et al. Structure-activity relationship studies on the novel neuropeptide orexin. Vol. 1999. In: Fujii N, editors. The Japanese Peptide Society; 2000. p. 37–40.Google Scholar
  106. 106.
    Darker JG, Porter RA, Eggleston DS, et al. Structure-activity analysis of truncated orexin-A analogues at the orexin-1 receptor. Bioorg Med Chem Lett. 2001;11(5):737–40.PubMedCrossRefGoogle Scholar
  107. 107.
    Croston GE, Olsson R, Currier EA, et al. Discovery of the first nonpeptide agonist of the GPR14/urotensin-II receptor: 3-(4-chlorophenyl)-3-(2-(dimethylamino)ethyl)isochroman-1-one (AC-7954). J Med Chem. 2002;45(23):4950–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Zaveri N. Peptide and nonpeptide ligands for the nociceptin/orphanin FQ receptor ORL1: research tools and potential therapeutic agents. Life Sci. 2003;73(6):663–78.PubMedCrossRefGoogle Scholar
  109. 109.
    Saar K, Mazarati AM, Mahlapuu R, et al. Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A. 2002;99(10):7136–41.PubMedCrossRefGoogle Scholar
  110. 110.
    Hecht M, Lin L, Kushida CA, et al. Report of a case of immunosuppression with prednisone in an 8-year-old boy with an acute onset of hypocretin-deficiency narcolepsy. Sleep. 2003;26(7):809–10.PubMedGoogle Scholar
  111. 111.
    Lecendreux M, Maret S, Bassetti C, et al. Clinical efficacy of high-dose intravenous immunoglobulins near the onset of narcolepsy in a 10-year-old boy. J Sleep Res. 2003;12(4):347–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Dauvilliers Y, Carlander B, River F, et al. IVIG treatment in narcolepsy: report on two new cases. J Sleep Res. 2004;13 Suppl 1:167.Google Scholar
  113. 113.
    Zuberi SM, Mignot E, Ling L, et al. Variable response to intravenous immunoglobulin therapy in childhood narcolepsy. J Sleep Res. 2004;13 Suppl 1:828.Google Scholar
  114. 114.
    Fronczek R, Verschuuren J, Lammers GJ. Response to intravenous immunoglobulins and placebo in a patient with narcolepsy with cataplexy. J Neurol. 2007;254(11):1607–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Taheri S, Krempetz M, Jackson M, et al. Investigation of the autoimmune basis of narcolepsy using western blot analysis of lateral hypothalamus protein extract with serum and cerebrospinal fluid. Sleep. 2003;26(Suppl):A285.Google Scholar
  116. 116.
    Chen W, Black J, Call P, et al. Late-onset narcolepsy presenting as rapidly progressing muscle weakness: response to plasmapheresis. Ann Neurol. 2005;58(3):489–90.PubMedCrossRefGoogle Scholar
  117. 117.
    Aran A, Lin L, Nevsimalova S, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32(8):979–83.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Sleep and Circadian Neurology Laboratory, Center for NarcolepsyStanford University School of MedicinePalo AltoUSA
  2. 2.Department of PsychiatryJichi Medical UniversityShimotsukeJapan

Personalised recommendations