Current Treatment Options in Neurology

, Volume 8, Issue 6, pp 441–450 | Cite as

Diagnosis and treatment of neurotransmitter disorders

  • Phillip L. Pearl
  • Thomas R. Hartka
  • Jacob Taylor

Opinion statement

The neurotransmitter disorders represent an enigmatic and enlarging group of neurometabolic conditions caused by abnormal neurotransmitter metabolism or transport. A high index of clinical suspicion is important, given the availability of therapeutic strategies. This article covers disorders of monoamine (catecholamine and serotonin) synthesis, glycine catabolism, pyridoxine dependency, and ã -aminobutyric acid (GABA) metabolism. The technological aspects of appropriate cerebrospinal fluid (CSF) collection, shipment, study, and interpretation merit special consideration. Diagnosis of disorders of monoamines requires analysis of CSF homovanillic acid, 5-hydroxyindoleacetic acid, ortho-methyldopa, BH4, and neopterin. The delineation of new disorders with important therapeutic implications, such as cerebral folate deficiency and PNPO deficiency, serves to highlight the value of measuring CSF neurotransmitter precursors and metabolites. The impressive responsiveness of Segawa fluctuating dystonia to levodopa is a hallmark feature of previously unrecognized neurologic morbidity becoming treatable at any age. Aromatic amino acid decarboxylase and tyrosine hydroxylase deficiency have more severe phenotypes and show variable responsiveness to levodopa. Glycine encephalopathy usually has a poor outcome; benzoate therapy may be helpful in less affected cases. Pyridoxine-dependent seizures are a refractory but treatable group of neonatal and infantile seizures; rare cases require pyridoxal-5-phosphate. Succinic semialdehyde dehydrogenase deficiency is relatively common in comparison to the remainder of this group of disorders. Treatment directed at the metabolic defect with vigabatrin has been disappointing, and multiple therapies are targeted toward specific but protean symptoms. Other disorders of GABA metabolism, as is true of the wide spectrum of neurotransmitter disorders, will require increasing use of CSF analysis for diagnosis, and ultimately, treatment.


Levodopa Dystonia Vigabatrin Main Drug Interaction Main Side Effect Nausea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Hyland K: The lumbar puncture for diagnosis of pediatric neurotransmitter diseases. Ann Neurol 2003, 54(Suppl 6):S13-S17. Overview of CSF neurotransmitter studies from the only laboratory currently offering clinical testing in the United States.PubMedCrossRefGoogle Scholar
  2. 2.
    Nemeth AH: The genetics of primary dystonias and related disorders. Brain 2002, 125:695–721.PubMedCrossRefGoogle Scholar
  3. 3.
    Tassin J, Durr A, Bonnet AM, et al.: Levodopa-responsive dystonia. GTP cyclohydrolase I or parkin mutations? Brain 2000, 123:1112–1121.PubMedCrossRefGoogle Scholar
  4. 4.
    Swoboda KJ, Saul JP, McKenna CE, et al.: Aromatic L-amino acid decarboxylase deficiency: overview of clinical features and outcomes. Ann Neurol 2003, 54(Suppl 6):S49-S55.PubMedCrossRefGoogle Scholar
  5. 5.
    Kure S, Narisawa K, Tada K: Enzymatic diagnosis of nonketotic hyperglycinemia with lymphoblasts. J Pediatr 1992, 120:95–98.PubMedCrossRefGoogle Scholar
  6. 6.
    Baxter P: Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta 2003, 1647:36–41.PubMedGoogle Scholar
  7. 7.
    Battaglioli G, Rosen DR, Gospe SM Jr, et al.: Glutamate decarboxylase is not genetically linked to pyridoxinedependent seizures. Neurology 2000, 55:309–311.PubMedGoogle Scholar
  8. 8.
    Cormier-Daire V, Dagoneau N, Nabbout R, et al.: A gene for pyridoxine-dependent epilepsy maps to chromosome 5q31. Am J Hum Genet 2000, 67:991–993.PubMedCrossRefGoogle Scholar
  9. 9.
    Bennett CL, Huynh HM, Chance PF, et al.: Genetic heterogeneity for autosomal recessive pyridoxine-dependent seizures. Neurogenetics 2005, 6:143–149.PubMedCrossRefGoogle Scholar
  10. 10.
    Plecko B, Stockler-Ipsiroglu S, Paschke E, et al.: Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy. Ann Neurol 2000, 48:121–125.PubMedCrossRefGoogle Scholar
  11. 11.
    Mills PB, Struys E, Jakobs C, et al.: Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 2006, 12:307–309.PubMedCrossRefGoogle Scholar
  12. 12.
    Mills PB, Surtees RA, Champion MP, et al.: Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Genet 2005, 14:1077–1086.PubMedCrossRefGoogle Scholar
  13. 13.
    Pearl PL, Capp PK, Novotny EJ, et al.: Inherited disorders of neurotransmitters in children and adults. Clin Biochem 2005, 38:1051–1058.PubMedCrossRefGoogle Scholar
  14. 14.
    Pearl P, Acosta MT, Wallis DD, et al.: Dyskinetic features of succinate semialdehyde dehydrogenase deficiency, a GABA degradative defect. In Paediatric Movement Disorders. Edited by Fernandez-Alvarez E, Arzimanoglou A, Tolosa E. Montrouge, France: John Libbey Eurotext Ltd.; 2005:203–212.Google Scholar
  15. 15.
    Akaboshi S, Hogema BM, Novelletto A, et al.: Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 2003, 22:442–450.PubMedCrossRefGoogle Scholar
  16. 16.
    Bandmann O, Wood NW: Dopa-responsive dystonia--the story so far. Neuropediatrics 2002, 33:1–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Segawa M, Nomura Y, Nishiyama N: Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 2003, 54(Suppl 6):S32-S45. This report is contained in a special monograph of the proceedings of a National Institutes of Health/PNDA-sponsored meeting on the pediatric neurotransmitter disorders held May 2002 in Bethesda, MD.PubMedCrossRefGoogle Scholar
  18. 18.
    Hwang WJ, Calne DB, Tsui JK, et al.: The long-term response to levodopa in dopa-responsive dystonia. Parkinsonism Relat Disord 2001, 8:1–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Jarman PR, Bandmann O, Marsden CD, et al.: GTP cyclohydrolase I mutations in patients with dystonia responsive to anticholinergic drugs. J Neurol Neurosurg Psychiatry 1997, 63:304–308.PubMedCrossRefGoogle Scholar
  20. 20.
    Swoboda KJ, Hyland K: Diagnosis and treatment of neurotransmitter-related disorders. Neurol Clin 2002, 20:1143–1161, viii.PubMedCrossRefGoogle Scholar
  21. 21.
    Chang YT, Sharma R, Marsh JL, et al.: Levodopa-responsive aromatic L-amino acid decarboxylase deficiency. Ann Neurol 2004, 55:435–438.PubMedCrossRefGoogle Scholar
  22. 22.
    Pons R, Ford B, Chiriboga CA, et al.: Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurology 2004, 62:1058–1065.PubMedGoogle Scholar
  23. 23.
    Fiumara A, Brautigam C, Hyland K, et al.: Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria. Clinical and laboratory findings in response to different therapies. Neuropediatrics 2002, 33:203–208.PubMedCrossRefGoogle Scholar
  24. 24.
    Grattan-Smith PJ, Wevers RA, Steenbergen-Spanjers GC, et al.: Tyrosine hydroxylase deficiency: clinical manifestations of catecholamine insufficiency in infancy. Mov Disord 2002, 17:354–359.PubMedCrossRefGoogle Scholar
  25. 25.
    Dionisi-Vici C, Hoffmann GF, Leuzzi V, et al.: Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. J Pediatr 2000, 136:560–562.PubMedCrossRefGoogle Scholar
  26. 26.
    Dinopoulos A, Kure S, Chuck G, et al.: Glycine decarboxylase mutations: a distinctive phenotype of nonketotic hyperglycinemia in adults. Neurology 2005, 64:1255–1257.PubMedGoogle Scholar
  27. 27.
    Chien YH, Hsu CC, Huang A, et al.: Poor outcome for neonatal-type nonketotic hyperglycinemia treated with high-dose sodium benzoate and dextromethorphan. J Child Neurol 2004, 19:39–42.PubMedGoogle Scholar
  28. 28.
    Korman SH, Boneh A, Ichinohe A, et al.: Persistent NKH with transient or absent symptoms and a homozygous GLDC mutation. Ann Neurol 2004, 56:139–143.PubMedCrossRefGoogle Scholar
  29. 29.
    Tekgul H, Serdaroglu G, Karapinar B, et al.: Vigabatrin caused rapidly progressive deterioration in two cases with early myoclonic encephalopathy associated with nonketotic hyperglycinemia. J Child Neurol 2006, 21:82–84.PubMedGoogle Scholar
  30. 30.
    Grillo E, da Silva RJ, Barbato JH Jr: Pyridoxine-dependent seizures responding to extremely low-dose pyridoxine. Dev Med Child Neurol 2001, 43:413–415.PubMedCrossRefGoogle Scholar
  31. 31.
    Baxter P: Pyridoxine or pyridoxal phosphate for intractable seizures? Arch Dis Child 2005, 90:441–442. Recommended editorial detailing the pyridoxine versus P5P debate from a recognized expert in pyridoxinedependent epilepsy.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang HS, Kuo MF, Chou ML, et al.: Pyridoxal phosphate is better than pyridoxine for controlling idiopathic intractable epilepsy. Arch Dis Child 2005, 90:512–525.PubMedCrossRefGoogle Scholar
  33. 33.
    Pearl PL, Gibson KM, Acosta MT, et al.: Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 2003, 60:1413–1417. Report of the clinical phenotype of the most common neurotransmitter disorder.PubMedGoogle Scholar
  34. 34.
    Ergezinger K, Jeschke R, Frauendienst-Egger G, et al.: Monitoring of 4-hydroxybutyric acid levels in body fluids during vigabatrin treatment in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 2003, 54:686–689.PubMedCrossRefGoogle Scholar
  35. 35.
    Pearl PL, Gropman A: Monitoring gamma-hydroxybutyric acid levels in succinate-semialdehyde dehydrogenase deficiency. Ann Neurol 2004, 55:599; author reply 599.PubMedCrossRefGoogle Scholar
  36. 36.
    Gropman A: Vigabatrin and newer interventions in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 2003, 54(Suppl 6):S66-S72. Emphasis on treatment options in SSADH deficiency.PubMedCrossRefGoogle Scholar
  37. 37.
    Hogema BM, Gupta M, Senephansiri H, et al.: Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet 2001, 29:212–216.PubMedCrossRefGoogle Scholar
  38. 38.
    Gupta M, Hogema BM, Grompe M, et al.: Murine succinate semialdehyde dehydrogenase deficiency. Ann Neurol 2003, 54(Suppl 6):S81-S90. Comprehensive report on murine SSADH, serving as a prototype of genetic degradative technology to develop animal models for further research.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  • Phillip L. Pearl
    • 1
  • Thomas R. Hartka
  • Jacob Taylor
  1. 1.Department of NeurologyChildren’s National Medical CenterWashingtonUSA

Personalised recommendations