Skip to main content

Advertisement

Log in

Interplay of Liver Disease and Gut Microbiota in the Development of Colorectal Neoplasia

  • Colon (JC Anderson, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of the review

Liver disease, colon cancer, and the gut microbiome are intimately interrelated; however, the connections linking liver disease and colorectal neoplasia via the gut microbiota remain poorly understood and rarely addressed in a single space. The goal of this review is to take a broad perspective on the clinical problem of colorectal neoplasia in the liver disease population, recognize the significance of the clinical study findings, and delve into the evidence supporting putative molecular mechanisms connecting dysbiosis in the progression of liver disease to the development of colorectal neoplasia.

Recent findings

Clinical studies have recently reported increased risk of colorectal neoplasia in patients with fatty liver disease, and risk increases with liver disease severity. Concurrently, the evolution of -omics technology has shown dysregulation of the gut microbial community, termed dysbiosis, in the progression of liver disease. Specific microbes enriched in the gut flora of liver disease patients have been linked to colon cancer and adenomatous precursor lesions.

Summary

The gut microbiome of liver disease patients generates a pro-neoplastic environment, mediated via altered bile acid signaling and a dysregulated inflammatory response that suppresses immune surveillance. Research focused on the mechanisms linking liver disease to colorectal neoplasia via the gut microbiome is needed to help us prepare for the rising tide of colon cancer in young patients with an increasing prevalence of liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. ABELS JC, et al. Metabolic studies in patients with cancer of the gastrointestinal tract. II. Hepatic dysfunction. Ann Intern Med. 1942;16(2):221–40.

    Google Scholar 

  2. Parker RG, Kendall EJ. The liver in ulcerative colitis. Br Med J. 1954;2(4845):1030–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith MP, Loe RH. Sclerosing cholangitis; review of recent case reports and associated diseases and four new cases. Am J Surg. 1965;110:239–46.

    CAS  PubMed  Google Scholar 

  4. Mistilis SP. Pericholangitis and ulcerative colitis. I. Pathology, etiology, and pathogenesis. Ann Intern Med. 1965;63:1–16.

    CAS  PubMed  Google Scholar 

  5. Sivak MV Jr, Farmer RG, Lalli F. Sclerosing cholangitis: its increasing frequency of recognition and association with inflammatory bowel disease. J Clin Gastroenterol. 1981;3(3):261–6.

    PubMed  Google Scholar 

  6. D’Haens GR, Lashner BA, Hanauer SB. Pericholangitis and sclerosing cholangitis are risk factors for dysplasia and cancer in ulcerative colitis. Am J Gastroenterol. 1993;88(8):1174–8.

    PubMed  Google Scholar 

  7. Soetikno RM, Lin OS, Heidenreich PA, Young HS, Blackstone MO. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. Gastrointest Endosc. 2002;56(1):48–54.

    PubMed  Google Scholar 

  8. Lindor KD, Kowdley KV, Harrison ME. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol. 2015;110(5):646–59 quiz 660.

    CAS  PubMed  Google Scholar 

  9. Ding W, Fan J, Qin J. Association between nonalcoholic fatty liver disease and colorectal adenoma: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8(1):322–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen H, Lipka S, Kumar A, Mustacchia P. Association between nonalcoholic fatty liver disease and colorectal adenoma: a systemic review and meta-analysis. J Gastrointest Oncol. 2014;5(6):440–6.

    PubMed  PubMed Central  Google Scholar 

  11. Wong VW, et al. High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. Gut. 2011;60(6):829–36.

    PubMed  Google Scholar 

  12. Siegel RL, et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J Natl Cancer Inst. 2017;109(8). https://doi.org/10.1093/jnci/djw322.

  13. Asrani SK, et al. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–171.

    PubMed  Google Scholar 

  14. Komaki Y, et al. Risk of colorectal cancer in chronic liver diseases: a systematic review and meta-analysis. Gastrointest Endosc. 2017;86(1):93–104.e5.

    PubMed  Google Scholar 

  15. •• Llorente C, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun. 2017;8(1):837 Translational analysis of the effect of acid suppression on gut microbiota and the its relationship to the natural history of alcoholic liver disease. This paper linked a clinical exposure to microbiota shift and identified a specific organism responsible for accelerating liver disease.

  16. Jia W, Xie G. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–28.

    CAS  PubMed  Google Scholar 

  17. Jaensson-Gyllenback E, et al. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol. 2011;4(4):438–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Czarnewski P, et al. Retinoic acid and its role in modulating intestinal innate immunity. Nutrients. 2017;9(1):e68.

    PubMed Central  Google Scholar 

  19. Chalasani N, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–357.

    PubMed  Google Scholar 

  20. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40(6):1387–95.

    PubMed  Google Scholar 

  21. Lee JY, Kim KM, Lee SG, Yu E, Lim YS, Lee HC, et al. Prevalence and risk factors of non-alcoholic fatty liver disease in potential living liver donors in Korea: a review of 589 consecutive liver biopsies in a single center. J Hepatol. 2007;47(2):239–44.

    PubMed  Google Scholar 

  22. Mantovani A, Dauriz M, Byrne CD, Lonardo A, Zoppini G, Bonora E, et al. Association between nonalcoholic fatty liver disease and colorectal tumours in asymptomatic adults undergoing screening colonoscopy: a systematic review and meta-analysis. Metabolism. 2018;87:1–12.

    CAS  PubMed  Google Scholar 

  23. Lee T, Yun KE, Chang Y, Ryu S, Park DI, Choi K, et al. Risk of colorectal neoplasia according to fatty liver severity and presence of gall bladder polyps. Dig Dis Sci. 2016;61(1):317–24.

    PubMed  Google Scholar 

  24. Ahn JS, Sinn DH, Min YW, Hong SN, Kim HS, Jung SH, et al. Non-alcoholic fatty liver diseases and risk of colorectal neoplasia. Aliment Pharmacol Ther. 2017;45(2):345–53.

    CAS  PubMed  Google Scholar 

  25. Bhatt BD, et al. Increased risk of colorectal polyps in patients with non-alcoholic fatty liver disease undergoing liver transplant evaluation. J Gastrointest Oncol. 2015;6(5):459–68.

    PubMed  PubMed Central  Google Scholar 

  26. Bardou M, Montembault S, Giraud V, Balian A, Borotto E, Houdayer C, et al. Excessive alcohol consumption favours high risk polyp or colorectal cancer occurrence among patients with adenomas: a case control study. Gut. 2002;50(1):38–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Song YK, Park YS, Seon CS, Lim HJ, Son BK, Ahn SB, et al. Alcohol drinking increased the risk of advanced colorectal adenomas. Intest Res. 2015;13(1):74–9.

    PubMed  PubMed Central  Google Scholar 

  28. Kim SH, Kim JW, Lee KL, Lee S, Koh SJ, Jeong JB, et al. Hepatitis B virus infection is independently associated with advanced colorectal adenoma. Am J Med Sci. 2018;356(2):141–6.

    PubMed  Google Scholar 

  29. Goldacre MJ, Wotton CJ, Yeates D, Seagroatt V, Collier J. Liver cirrhosis, other liver diseases, pancreatitis and subsequent cancer: record linkage study. Eur J Gastroenterol Hepatol. 2008;20(5):384–92.

    PubMed  Google Scholar 

  30. Landgren AM, Landgren O, Gridley G, Dores GM, Linet MS, Morton LM. Autoimmune disease and subsequent risk of developing alimentary tract cancers among 4.5 million US male veterans. Cancer. 2011;117(6):1163–71.

    PubMed  Google Scholar 

  31. Singh S, Khanna S, Pardi DS, Loftus EV Jr, Talwalkar JA. Effect of ursodeoxycholic acid use on the risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2013;19(8):1631–8.

    PubMed  Google Scholar 

  32. Singh S, Varayil JE, Loftus EV Jr, Talwalkar JA. Incidence of colorectal cancer after liver transplantation for primary sclerosing cholangitis: a systematic review and meta-analysis. Liver Transpl. 2013;19(12):1361–9.

    PubMed  Google Scholar 

  33. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29(6):781–8.

    CAS  PubMed  Google Scholar 

  34. Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med. 2015;372(15):1441–52.

    CAS  PubMed  Google Scholar 

  35. Saltzman ET, Palacios T, Thomsen M, Vitetta L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front Microbiol. 2018;9:61.

    PubMed  PubMed Central  Google Scholar 

  36. Inoue T, Nakayama J, Moriya K, Kawaratani H, Momoda R, Ito K, et al. Gut dysbiosis associated with hepatitis C virus infection. Clin Infect Dis. 2018;67(6):869–77.

    CAS  PubMed  Google Scholar 

  37. Wang J, Wang Y, Zhang X, Liu J, Zhang Q, Zhao Y, et al. Gut microbial dysbiosis is associated with altered hepatic functions and serum metabolites in chronic hepatitis B patients. Front Microbiol. 2017;8:2222.

    PubMed  PubMed Central  Google Scholar 

  38. Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res. 2015;39(5):763–75.

    PubMed  PubMed Central  Google Scholar 

  39. •• Jiang W, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015;5:8096 Critical paper that examined the compositional changes in gut microbiota of NAFLD patients. They also assessed changes in immune signaling and T lymphocyte populations in patient biopsies together, showing the microbial populations were linked to altered immune activity in the gut mucosa.

  40. Chang C, et al. The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma. Appl Microbiol Biotechnol. 2019; 103(3):1393–1404.

    PubMed  Google Scholar 

  41. • Kostic AD, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15 One of the first groups to identify Fusobacterium nucleatum in colorectal adenocarcinomas, this follow on paper addressed the mechanistic link and molecular pathway whereby the bacterium supports the development of neoplasia.

    CAS  Google Scholar 

  42. Yan G, et al. A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 2018;78(19):5586–99.

    CAS  PubMed  Google Scholar 

  43. Mori G, Rampelli S, Orena BS, Rengucci C, de Maio G, Barbieri G, et al. Shifts of faecal microbiota during sporadic colorectal carcinogenesis. Sci Rep. 2018;8(1):10329.

    PubMed  PubMed Central  Google Scholar 

  44. Peters BA, Dominianni C, Shapiro JA, Church TR, Wu J, Miller G, et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome. 2016;4(1):69.

    PubMed  PubMed Central  Google Scholar 

  45. Rezasoltani S, Asadzadeh Aghdaei H, Dabiri H, Akhavan Sepahi A, Modarressi MH, Nazemalhosseini Mojarad E. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb Pathog. 2018;124:244–9.

    PubMed  Google Scholar 

  46. Park CH, Han DS, Oh YH, Lee AR, Lee YR, Eun CS. Role of fusobacteria in the serrated pathway of colorectal carcinogenesis. Sci Rep. 2016;6:25271.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7(6):e39743.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol. 2015;50(2):167–79.

    CAS  PubMed  Google Scholar 

  50. Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS. Role of oral microbiome on oral cancers, a review. Biomed Pharmacother. 2016;84:552–8.

    CAS  PubMed  Google Scholar 

  51. Strauss J, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.

    PubMed  Google Scholar 

  52. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–72.

    PubMed  Google Scholar 

  55. Acharya C, Sahingur SE, Bajaj JS. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight. 2017:2(19):94416.

  56. Bajaj JS, Betrapally NS, Hylemon PB, Heuman DM, Daita K, White MB, et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology. 2015;62(4):1260–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016;65(12):2035–44.

    CAS  PubMed  Google Scholar 

  58. Abdulamir AS, Hafidh RR, Abu Bakar F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res. 2011;30:11.

    PubMed  PubMed Central  Google Scholar 

  59. Sun J, Kato I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 2016;3(2):130–43.

    PubMed  PubMed Central  Google Scholar 

  60. Boursi B, Haynes K, Mamtani R, Yang YX. Impact of antibiotic exposure on the risk of colorectal cancer. Pharmacoepidemiol Drug Saf. 2015;24(5):534–42.

    CAS  PubMed  Google Scholar 

  61. Kaur K, Saxena A, Debnath I, O’Brien JL, Ajami NJ, Auchtung TA, et al. Antibiotic-mediated bacteriome depletion in Apc(Min/+) mice is associated with reduction in mucus-producing goblet cells and increased colorectal cancer progression. Cancer Med. 2018;7(5):2003–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Enblad M, Birgisson H, Ekbom A, Sandin F, Graf W. Increased incidence of bowel cancer after non-surgical treatment of appendicitis. Eur J Surg Oncol. 2017;43(11):2067–75.

    PubMed  Google Scholar 

  63. Cao Y, et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut. 2018;67(4):672–8.

    CAS  PubMed  Google Scholar 

  64. Theochari NA, Stefanopoulos A, Mylonas KS, Economopoulos KP. Antibiotics exposure and risk of inflammatory bowel disease: a systematic review. Scand J Gastroenterol. 2018;53(1):1–7.

    CAS  PubMed  Google Scholar 

  65. Ungaro R, Bernstein CN, Gearry R, Hviid A, Kolho KL, Kronman MP, et al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol. 2014;109(11):1728–38.

    CAS  PubMed  Google Scholar 

  66. Starkel P, Schnabl B. Bidirectional communication between liver and gut during alcoholic liver disease. Semin Liver Dis. 2016;36(4):331–9.

    CAS  PubMed  Google Scholar 

  67. Brenner DA, Paik YH, Schnabl B. Role of gut microbiota in liver disease. J Clin Gastroenterol. 2015;49(Suppl 1):S25–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol. 2018;44:34–40.

    PubMed  PubMed Central  Google Scholar 

  69. Wei X, et al. Community-metabolome correlations of gut microbiota from Child-Turcotte-Pugh of A and B patients. Front Microbiol. 2016;7:1856.

    PubMed  PubMed Central  Google Scholar 

  70. Wei X, Yan X, Zou D, Yang Z, Wang X, Liu W, et al. Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol. 2013;13:175.

    PubMed  PubMed Central  Google Scholar 

  71. Kosmalski M, Mokros Ł, Kuna P, Witusik A, Pietras T. Changes in the immune system - the key to diagnostics and therapy of patients with non-alcoholic fatty liver disease. Cent Eur J Immunol. 2018;43(2):231–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940–7.

    CAS  PubMed  Google Scholar 

  73. Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol. 2011;85(8):863–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7(3):201–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. 2009;50(8):1509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.

    CAS  Google Scholar 

  77. Nagengast FM, Grubben MJ, van Munster IP. Role of bile acids in colorectal carcinogenesis. Eur J Cancer. 1995;31a(7–8):1067–70.

    CAS  PubMed  Google Scholar 

  78. • Schulz MD, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514(7523):508–12 This paper used a high-fat diet mouse model to separate the relative contributions of obesity and its complications from dysbiosis in intestinal oncogenesis. Importantly, they demonstrate high-fat diet-induced shifts in gut microbiota that potentiated cancer in the absence of obesity and fatty liver, anchoring the microbiota-carcinoma hypothesis.

  79. Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer. 2017;140(11):2545–56.

    CAS  PubMed  Google Scholar 

  80. Calmus Y, Poupon R. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases. Clin Res Hepatol Gastroenterol. 2014;38(5):550–6.

    CAS  PubMed  Google Scholar 

  81. Sun L, Beggs K, Borude P, Edwards G, Bhushan B, Walesky C, et al. Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling. Am J Physiol Gastrointest Liver Physiol. 2016;311(1):G91–g104.

    PubMed  PubMed Central  Google Scholar 

  82. Kakiyama G, Hylemon PB, Zhou H, Pandak WM, Heuman DM, Kang DJ, et al. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2014;306(11):G929–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chazouillères O. Primary sclerosing cholangitis and bile acids. Clin Res Hepatol Gastroenterol. 2012;36(Suppl 1):S21–5.

    PubMed  Google Scholar 

  84. Caussy C, et al. Serum bile acid patterns are associated with the presence of NAFLD in twins, and dose-dependent changes with increase in fibrosis stage in patients with biopsy-proven NAFLD. Aliment Pharmacol Ther. 2019; 49(2):183–193.

    Google Scholar 

  85. Wang X, Xie G, Zhao A, Zheng X, Huang F, Wang Y, et al. Serum bile acids are associated with pathological progression of hepatitis B-induced cirrhosis. J Proteome Res. 2016;15(4):1126–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li Y, Tang R, Leung PSC, Gershwin ME, Ma X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun Rev. 2017;16(9):885–96.

    CAS  PubMed  Google Scholar 

  87. Vernia P, Gnaedinger A, Hauck W, Breuer RI. Organic anions and the diarrhea of inflammatory bowel disease. Dig Dis Sci. 1988;33(11):1353–8.

    CAS  PubMed  Google Scholar 

  88. Wong JM, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–43.

    CAS  PubMed  Google Scholar 

  89. Chen J, Vitetta L. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin Colorectal Cancer. 2018;17(3):e541–4.

    PubMed  Google Scholar 

  90. Li Q, Cao L, Tian Y, Zhang P, Ding C, Lu W, et al. Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol Cell Proteomics. 2018;17(8):1531–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu Z, et al. Sodium butyrate inhibits colorectal cancer cell migration by downregulating Bmi-1 through enhanced miR-200c expression. Mol Nutr Food Res. 2018;62(6):e1700844.

    PubMed  Google Scholar 

  92. Loomba R, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25(5):1054–1062.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jin M, Kalainy S, Baskota N, Chiang D, Deehan EC, McDougall C, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int. 2019. https://doi.org/10.1111/liv.14106.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Gleeson MD, PhD.

Ethics declarations

Conflict of Interest

Dr. Gleeson declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is part of the Topical Collection on Colon

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleeson, M.W. Interplay of Liver Disease and Gut Microbiota in the Development of Colorectal Neoplasia. Curr Treat Options Gastro 17, 378–393 (2019). https://doi.org/10.1007/s11938-019-00241-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-019-00241-6

Keywords

Navigation