Current Treatment Options in Gastroenterology

, Volume 15, Issue 4, pp 618–636 | Cite as

Drug-Herb Interactions in the Elderly Patient with IBD: a Growing Concern

  • Haider Rahman
  • Marina Kim
  • Galen Leung
  • Jesse A. Green
  • Seymour Katz
Intractable Disease in the Elderly: When Conventional Therapy Fails (S Katz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Intractable Disease in the Elderly: When Conventional Therapy Fails

Opinion statement

Inflammatory bowel disease (IBD), which includes conditions such as Crohn’s disease and ulcerative colitis, is becoming more prevalent with the elderly being the fastest growing group. Parallel to this, there is an increasing interest in the use of complementary and alternative medicine (CAM). Nearly half of patients with IBD have used CAM at one time. The elderly patients, however, are burdened by comorbid conditions, polypharmacy, and altered functional status. With increasing use of complementary and alternative medicine in our elderly patients with IBD, it is vital for the provider to provide counsel on drug-herb potential interactions. CAM includes herbal products, diet, dietary supplements, acupuncture, and prayer. In this paper, we will review common CAM, specifically herbs, that are used in patients with IBD including the herb background, suggested use, evidence in IBD, and most importantly, potential interactions with IBD medications used in elderly patients. Most important evidence-based adverse events and drug-herb interactions are summarized. The herbs discussed include Triticum aestivum (wheat grass), Andrographis paniculata (chiretta), Boswellia serrata, tormentil, bilberry, curcumin (turmeric), Plantago ovata (blond psyllium), Oenothera biennis (evening primrose oil), germinated barley foodstuff, an herbal preparation of myrrh, chamomile and coffee extract, chios mastic gum, wormwood (absinthe, thujone), Cannabis sativa (marijuana, THC), tripterygium wilfordii (thunder god vine), Ulmus rubra (slippery elm bark), trigonella foenugraecum (fenugreek), Dioscorea mexicana (wild yam), Harpagophytum procumbens (devil’s claw), ginger, cinnamon, licorice, and peppermint.

Keywords

Inflammatory bowel disease IBD Aging Elderly Herbal Complementary Alternative CAM Interactions Crohn’s disease Ulcerative colitis Adverse events Drug-herb interactions Wheatgrass Turmeric Barley Chios mastic gum Absinthe Wormwood Cannabis Marijuana THC Primrose Ginger Cinnamon Licorice Peppermint 

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Holtmeier W, Zeuzem S, Preiss J, et al. Randomized, placebo-controlled, double-blind trial of Boswellia serrata in maintaining remission of Crohn’s disease: good safety profile but lack of efficacy. Inflamm Bowel Dis. 2011;17(2):573–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim M, Katz S, Green J. Drug management in the elderly IBD patient. Curr Treat Options Gastroenterol. 2015;13(1):90–104.PubMedCrossRefGoogle Scholar
  3. 3.
    Hilsden RJ, Verhoef MJ, Rasmussen H, Porcino A, DeBruyn JC. Use of complementary and alternative medicine by patients with inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(2):655–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Rawsthorne P, Clara I, Graff LA, et al. The Manitoba inflammatory bowel disease cohort study: a prospective longitudinal evaluation of the use of complementary and alternative medicine services and products. Gut. 2012;61(4):521–7.PubMedCrossRefGoogle Scholar
  5. 5.
    • Abitbol V, Lahmek P, Buisson A, et al. Impact of complementary and alternative medicine on the quality of life in inflammatory bowel disease: results from a French national survey. Eur J Gastroenterol Hepatol. 2014;26(3):288–94. A large number of patients with IBD use CAM; however, the gastroenterologist is only aware of CAM use in less than 50% of patients.PubMedCrossRefGoogle Scholar
  6. 6.
    Ben-Arye E, Goldin E, Wengrower D, Stamper A, Kohn R, Berry E. Wheat grass juice in the treatment of active distal ulcerative colitis: a randomized double-blind placebo-controlled trial. Scand J Gastroenterol. 2002;37(4):444–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Jada SR, Hamzah AS, Lajis NH, Saad MS, Stevens MF, Stanslas J. Semisynthesis and cytotoxic activities of andrographolide analogues. J Enzyme Inhib Med Chem. 2006;21(2):145–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Kibirev VK, Osadchuk TV. Structure and properties of proprotein convertase inhibitors. Ukr Biokhim Zh (1999). 2012;84(2):5–29.Google Scholar
  9. 9.
    Hidalgo MA, Romero A, Figueroa J, et al. Andrographolide interferes with binding of nuclear factor-kappaB to DNA in HL-60-derived neutrophilic cells. Br J Pharmacol. 2005;144(5):680–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Liu YH, Zhang ZB, Zheng YF, et al. Gastroprotective effect of andrographolide sodium bisulfite against indomethacin-induced gastric ulceration in rats. Int Immunopharmacol. 2015;26(2):384–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Tang T, Targan SR, Li ZS, Xu C, Byers VS, Sandborn WJ. Randomised clinical trial: herbal extract HMPL-004 in active ulcerative colitis—a double-blind comparison with sustained release mesalazine. Aliment Pharmacol Ther. 2011;33(2):194–202.PubMedCrossRefGoogle Scholar
  12. 12.
    • Sandborn WJ, Targan SR, Byers VS, et al. Andrographis paniculata extract (HMPL-004) for active ulcerative colitis. Am J Gastroenterol. 2013;108(1):90–8. This extract has been compared to mesalamine for reducing symptoms in mild to moderate ulcerative colitis.PubMedCrossRefGoogle Scholar
  13. 13.
    Kligler B, Ulbricht C, Basch E, et al. Andrographis paniculata for the treatment of upper respiratory infection: a systematic review by the natural standard research collaboration. Explore (NY). 2006;2(1):25–9.CrossRefGoogle Scholar
  14. 14.
    Thamlikitkul V, Dechatiwongse T, Theerapong S, et al. Efficacy of Andrographis paniculata, Nees for pharyngotonsillitis in adults. J Med Assoc Thail. 1991;74(10):437–42.Google Scholar
  15. 15.
    Coon JT, Ernst E. Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy. Planta Med. 2004;70(4):293–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Saxena RC, Singh R, Kumar P, et al. A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold) in patients with uncomplicated upper respiratory tract infection. Phytomedicine. 2010;17(3–4):178–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Burgos RA, Hancke JL, Bertoglio JC, et al. Efficacy of an Andrographis paniculata composition for the relief of rheumatoid arthritis symptoms: a prospective randomized placebo-controlled trial. Clin Rheumatol. 2009;28(8):931–46.PubMedCrossRefGoogle Scholar
  18. 18.
    Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava V, Tandon JS. Immunostimulant agents from Andrographis paniculata. J Nat Prod. 1993;56(7):995–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006;72(12):1100–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Shen T, Lou HX. Bioactive constituents of myrrh and frankincense, two simultaneously prescribed gum resins in chinese traditional medicine. Chem Biodivers. 2008;5(4):540–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Safayhi H, Sailer ER, Ammon HP. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol Pharmacol. 1995;47(6):1212–6.PubMedGoogle Scholar
  22. 22.
    Sailer ER, Subramanian LR, Rall B, Hoernlein RF, Ammon HP, Safayhi H. Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br J Pharmacol. 1996;117(4):615–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gupta I, Parihar A, Malhotra P, et al. Effects of Boswellia serrata gum resin in patients with ulcerative colitis. Eur J Med Res. 1997;2(1):37–43.PubMedGoogle Scholar
  24. 24.
    Gupta I, Parihar A, Malhotra P, et al. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med. 2001;67(5):391–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Gerhardt H, Seifert F, Buvari P, Vogelsang H, Repges R. Therapy of active Crohn disease with Boswellia serrata extract H 15. Z Gastroenterol. 2001;39(1):11–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Kimmatkar N, Thawani V, Hingorani L, Khiyani R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee—a randomized double blind placebo controlled trial. Phytomedicine. 2003;10(1):3–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Gupta I, Gupta V, Parihar A, et al. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. Eur J Med Res. 1998;3(11):511–4.PubMedGoogle Scholar
  28. 28.
    Clark CE, Arnold E, Lasserson TJ, Wu T. Herbal interventions for chronic asthma in adults and children: a systematic review and meta-analysis. Prim Care Respir J. 2010;19(4):307–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Kirste S, Treier M, Wehrle SJ, et al. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer. 2011;117(16):3788–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Sengupta K, Alluri KV, Satish AR, et al. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin for treatment of osteoarthritis of the knee. Arthritis Res Ther. 2008;10(4):R85.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mikhaeil BR, Maatooq GT, Badria FA, Amer MM. Chemistry and immunomodulatory activity of frankincense oil. Z Naturforsch C. 2003;58(3–4):230–8.PubMedGoogle Scholar
  32. 32.
    Altmann A, Poeckel D, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes. Br J Pharmacol. 2004;141(2):223–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Fecka I. Development of chromatographic methods for determination of agrimoniin and related polyphenols in pharmaceutical products. J AOAC Int. 2009;92(2):410–8.PubMedGoogle Scholar
  34. 34.
    Kite GC, Porter EA, Simmonds MS. Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography-mass spectrometry. J Chromatogr A. 2007;1148(2):177–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Gazikalovic E, Bodiroga M, Ognjanovic J. Determination of tannins in the rhizomes of Potentilla tormentilla. Vojnosanit Pregl. 1992;49(4):339–42.PubMedGoogle Scholar
  36. 36.
    Schenck G, Fromming KH, Frohnecke L. Paper chromatography of the ingredients of tormentil tincture. Arch Pharm Ber Dtsch Pharm Ges. 1957;290/62(10):453–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Tomczyk M, Latte KP. Potentilla—a review of its phytochemical and pharmacological profile. J Ethnopharmacol. 2009;122(2):184–204.PubMedCrossRefGoogle Scholar
  38. 38.
    Huber R, Ditfurth AV, Amann F, et al. Tormentil for active ulcerative colitis: an open-label, dose-escalating study. J Clin Gastroenterol. 2007;41(9):834–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Milbury PE, Graf B, Curran-Celentano JM, Blumberg JB. Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. Invest Ophthalmol Vis Sci. 2007;48(5):2343–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu QK, Koponen JM, Mykkanen HM, Torronen AR. Berry phenolic extracts modulate the expression of p21(WAF1) and Bax but not Bcl-2 in HT-29 colon cancer cells. J Agric Food Chem. 2007;55(4):1156–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Gottikh MB, Tashlitskii VN. Determination of the qualitative and quantitative composition of antocyan pigments as components of dietary supplements and drugs for vision. Vestn oftalmol. 2010;126(5):34–7.PubMedGoogle Scholar
  42. 42.
    Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol. 1983;32(7):1141–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Karlsen A, Retterstol L, Laake P, et al. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137(8):1951–4.PubMedGoogle Scholar
  44. 44.
    Kolehmainen M, Mykkanen O, Kirjavainen PV, et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol Nutr Food Res. 2012;56(10):1501–10.PubMedCrossRefGoogle Scholar
  45. 45.
    de Mello VD, Schwab U, Kolehmainen M, et al. A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: the Sysdimet study. Diabetologia. 2011;54(11):2755–67.PubMedCrossRefGoogle Scholar
  46. 46.
    Karlsen A, Paur I, Bohn SK, et al. Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr. 2010;49(6):345–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Biedermann L, Mwinyi J, Scharl M, et al. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis—an open pilot study. J Crohns Colitis. 2013;7(4):271–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Li W, Wang S, Feng J, et al. Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magn Reson Chem. 2009;47(10):902–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Li W, Xiao H, Wang L, Liang X. Analysis of minor curcuminoids in Curcuma longa L. by high performance liquid chromatography-tandem mass spectrometry. Se Pu. 2009;27(3):264–9.PubMedGoogle Scholar
  50. 50.
    Sotanaphun U, Phattanawasin P, Sriphong L. Application of Scion image software to the simultaneous determination of curcuminoids in turmeric (Curcuma longa). Phytochem Anal. 2009;20(1):19–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka K, Kuba Y, Sasaki T, Hiwatashi F, Komatsu K. Quantitation of curcuminoids in curcuma rhizome by near-infrared spectroscopic analysis. J Agric Food Chem. 2008;56(19):8787–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang F, Altorki NK, Mestre JR, Subbaramaiah K, Dannenberg AJ. Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis. 1999;20(3):445–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Takada Y, Bhardwaj A, Potdar P, Aggarwal BB. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene. 2004;23(57):9247–58.PubMedCrossRefGoogle Scholar
  54. 54.
    Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of turmeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci. 2005;50(11):2191–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Hanai H, Iida T, Takeuchi K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol. 2006;4(12):1502–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Kumar S, Ahuja V, Sankar MJ, Kumar A, Moss AC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;10:CD008424.PubMedPubMedCentralGoogle Scholar
  58. 58.
    •• Singla V, Pratap Mouli V, Garg SK, et al. Induction with NCB-02 (curcumin) enema for mild-to-moderate distal ulcerative colitis—a randomized, placebo-controlled, pilot study. J Crohns Colitis. 2014;8(3):208–14. Curcumin improves symptoms in ulcerative colitis when used on its own and when combined with 5-ASA derivatives and corticosteroids. When added to conventional therapy, it also helps with decreasing recurrence in ulcerative colitis. In this study, curcumin enemas were given for 8 weeks and demonstrated improved remission rates for induction of ulcerative colitis. Google Scholar
  59. 59.
    Sharma RA, McLelland HR, Hill KA, et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res. 2001;7(7):1894–900.PubMedGoogle Scholar
  60. 60.
    Kuptniratsaikul V, Thanakhumtorn S, Chinswangwatanakul P, Wattanamongkonsil L, Thamlikitkul V. Efficacy and safety of Curcuma domestica extracts in patients with knee osteoarthritis. J Altern Complement Med. 2009;15(8):891–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Carroll RE, Benya RV, Turgeon DK, et al. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila). 2011;4(3):354–64.CrossRefGoogle Scholar
  62. 62.
    Kusuhara H, Furuie H, Inano A, et al. Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br J Pharmacol. 2012;166(6):1793–803.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013;169(8):1672–92.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yu T, Chen C, Sun Y, et al. ABT-737 sensitizes curcumin-induced anti-melanoma cell activity through facilitating mPTP death pathway. Biochem Biophys Res Commun. 2015;464(1):286–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Sagiroglu T, Kanter M, Yagci MA, Sezer A, Erboga M. Protective effect of curcumin on cyclosporin A-induced endothelial dysfunction, antioxidant capacity, and oxidative damage. Toxicol Ind Health. 2014;30(4):316–27.PubMedCrossRefGoogle Scholar
  66. 66.
    Abdel Fattah EA, Hashem HE, Ahmed FA, Ghallab MA, Varga I, Polak S. Prophylactic role of curcumin against cyclosporine-induced nephrotoxicity: histological and immunohistological study. Gen Physiol Biophys. 2010;29(1):85–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Chueh SC, Lai MK, Liu IS, Teng FC, Chen J. Curcumin enhances the immunosuppressive activity of cyclosporine in rat cardiac allografts and in mixed lymphocyte reactions. Transplant Proc. 2003;35(4):1603–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Dhanasekaran S, Biswal BK, Sumantran VN, Verma RS. Augmented sensitivity to methotrexate by curcumin induced overexpression of folate receptor in KG-1 cells. Biochimie. 2013;95(8):1567–73.PubMedCrossRefGoogle Scholar
  69. 69.
    Sankrityayan H, Majumdar AS. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction. Can J Physiol Pharmacol. 2016;94(1):89–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Morsy MA, Ibrahim SA, Amin EF, Kamel MY, Rifaai RA, Hassan MK. Curcumin ameliorates methotrexate-induced nephrotoxicity in rats. Adv Pharmacol Sci. 2013;2013:387071.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Song WB, Wang YY, Meng FS, et al. Curcumin protects intestinal mucosal barrier function of rat enteritis via activation of MKP-1 and attenuation of p38 and NF-kappaB activation. PLoS One. 2010;5(9):e12969.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Banji D, Pinnapureddy J, Banji OJ, Saidulu A, Hayath MS. Synergistic activity of curcumin with methotrexate in ameliorating Freund’s Complete Adjuvant induced arthritis with reduced hepatotoxicity in experimental animals. Eur J Pharmacol. 2011;668(1–2):293–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Marlett JA, Kajs TM, Fischer MH. An unfermented gel component of psyllium seed husk promotes laxation as a lubricant in humans. Am J Clin Nutr. 2000;72(3):784–9.PubMedGoogle Scholar
  74. 74.
    Fernandez-Banares F, Hinojosa J, Sanchez-Lombrana JL, et al. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am J Gastroenterol. 1999;94(2):427–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Hallert C, Kaldma M, Petersson BG. Ispaghula husk may relieve gastrointestinal symptoms in ulcerative colitis in remission. Scand J Gastroenterol. 1991;26(7):747–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Fujimori S, Tatsuguchi A, Gudis K, et al. High dose probiotic and prebiotic cotherapy for remission induction of active Crohn’s disease. J Gastroenterol Hepatol. 2007;22(8):1199–204.PubMedCrossRefGoogle Scholar
  77. 77.
    Anderson JW, Allgood LD, Lawrence A, et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am J Clin Nutr. 2000;71(2):472–9.PubMedGoogle Scholar
  78. 78.
    Agha FP, Nostrant TT, Fiddian-Green RG. “Giant colonic bezoar:” a medication bezoar due to psyllium seed husks. Am J Gastroenterol. 1984;79(4):319–21.PubMedGoogle Scholar
  79. 79.
    Hilz MJ, Marthol H, Neundorfer B. Diabetic somatic polyneuropathy. Pathogenesis, clinical manifestations and therapeutic concepts. Fortschr Neurol Psychiatr. 2000;68(6):278–88.PubMedCrossRefGoogle Scholar
  80. 80.
    Kunkel SL, Ogawa H, Ward PA, Zurier RB. Suppression of chronic inflammation by evening primrose oil. Prog Lipid Res. 1981;20:885–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Belch JJ, Hill A. Evening primrose oil and borage oil in rheumatologic conditions. Am J Clin Nutr. 2000;71(1 Suppl):352S–6S.PubMedGoogle Scholar
  82. 82.
    Darlington LG, Stone TW. Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. Br J Nutr. 2001;85(3):251–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Greenfield SM, Green AT, Teare JP, et al. A randomized controlled study of evening primrose oil and fish oil in ulcerative colitis. Aliment Pharmacol Ther. 1993;7(2):159–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Ehrenbergerova J, Belcrediova N, Pryma J, Vaculova K, Newman CW. Effect of cultivar, year grown, and cropping system on the content of tocopherols and tocotrienols in grains of hulled and hulless barley. Plant Foods Hum Nutr. 2006;61(3):145–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Kanauchi O, Fujiyama Y, Mitsuyama K, et al. Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int J Mol Med. 1999;3(2):175–9.PubMedGoogle Scholar
  86. 86.
    Kanauchi O, Iwanaga T, Mitsuyama K. Germinated barley foodstuff feeding. A novel neutraceutical therapeutic strategy for ulcerative colitis. Digestion. 2001;63(Suppl 1):60–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Hanai H, Kanauchi O, Mitsuyama K, et al. Germinated barley foodstuff prolongs remission in patients with ulcerative colitis. Int J Mol Med. 2004;13(5):643–7.PubMedGoogle Scholar
  88. 88.
    Kanauchi O, Suga T, Tochihara M, et al. Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol. 2002;37(Suppl 14):67–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Kanauchi O, Mitsuyama K, Homma T, et al. Treatment of ulcerative colitis patients by long-term administration of germinated barley foodstuff: multi-center open trial. Int J Mol Med. 2003;12(5):701–4.PubMedGoogle Scholar
  90. 90.
    Mitsuyama K, Saiki T, Kanauchi O, et al. Treatment of ulcerative colitis with germinated barley foodstuff feeding: a pilot study. Aliment Pharmacol Ther. 1998;12(12):1225–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Kanauchi O, Mitsuyama K, Saiki T, Agata K, Nakamura T, Iwanaga T. Preventive effects of germinated barley foodstuff on methotrexate-induced enteritis in rats. Int J Mol Med. 1998;1(6):961–6.PubMedGoogle Scholar
  92. 92.
    Shalaby MA, Hammouda AA. Analgesic, anti-inflammatory and anti-hyperlipidemic activities of Commiphora molmol extract (Myrrh). J Intercult Ethnopharmacol. 2014;3(2):56–62.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Langhorst J, Varnhagen I, Schneider SB, et al. Randomised clinical trial: a herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis—a double-blind, double-dummy study. Aliment Pharmacol Ther. 2013;38(5):490–500.PubMedCrossRefGoogle Scholar
  94. 94.
    Bhaskaran N, Shukla S, Srivastava JK, Gupta S. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. Int J Mol Med. 2010;26(6):935–40.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Gostner JM, Schroecksnadel S, Jenny M, et al. Coffee extracts suppress tryptophan breakdown in mitogen-stimulated peripheral blood mononuclear cells. J Am Coll Nutr. 2015;34(3):212–23.PubMedCrossRefGoogle Scholar
  96. 96.
    Mazokopakis EE, Vrentzos GE, Papadakis JA, Babalis DE, Ganotakis ES. Wild chamomile (Matricaria recutita L.) mouthwashes in methotrexate-induced oral mucositis. Phytomedicine. 2005;12(1–2):25–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Mahmoudi M, Ebrahimzadeh MA, Nabavi SF, Hafezi S, Nabavi SM, Eslami S. Antiinflammatory and antioxidant activities of gum mastic. Eur Rev Med Pharmacol Sci. 2010;14(9):765–9.PubMedGoogle Scholar
  98. 98.
    Qiao J, Li A, Jin X, Wang J. Mastic alleviates allergic inflammation in asthmatic model mice by inhibiting recruitment of eosinophils. Am J Respir Cell Mol Biol. 2011;45(1):95–100.PubMedCrossRefGoogle Scholar
  99. 99.
    Gioxari A, Kaliora AC, Papalois A, Agrogiannis G, Triantafillidis JK, Andrikopoulos NK. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis. J Med Food. 2011;14(11):1403–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Choli-Papadopoulou T, Kottakis F, Papadopoulos G, Pendas S. Helicobacter pylori neutrophil activating protein as target for new drugs against H. pylori inflammation. World J Gastroenterol. 2011;17(21):2585–91.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Al-Said MS, Ageel AM, Parmar NS, Tariq M. Evaluation of mastic, a crude drug obtained from Pistacia lentiscus for gastric and duodenal anti-ulcer activity. J Ethnopharmacol. 1986;15(3):271–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Kaliora AC, Stathopoulou MG, Triantafillidis JK, Dedoussis GV, Andrikopoulos NK. Chios mastic treatment of patients with active Crohn’s disease. World J Gastroenterol. 2007;13(5):748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Van der Meersch H. Review of the use of artemisinin and its derivatives in the treatment of malaria. J Pharm Belg. 2005;60(1):23–9.PubMedGoogle Scholar
  104. 104.
    Rezaeinodehi A, Khangholi S. Chemical composition of the essential oil of Artemisia absinthium growing wild in Iran. Pak J Biol Sci. 2008;11(6):946–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Burkhard PR, Burkhardt K, Haenggeli CA, Landis T. Plant-induced seizures: reappearance of an old problem. J Neurol. 1999;246(8):667–70.PubMedCrossRefGoogle Scholar
  106. 106.
    Omer B, Krebs S, Omer H, Noor TO. Steroid-sparing effect of wormwood (Artemisia absinthium) in Crohn’s disease: a double-blind placebo-controlled study. Phytomedicine. 2007;14(2–3):87–95.PubMedCrossRefGoogle Scholar
  107. 107.
    Koo HN, Hong SH, Jeong HJ, et al. Inhibitory effect of Artemisia capillaris on ethanol-induced cytokines (TNF-alpha, IL-1alpha) secretion in Hep G2 cells. Immunopharmacol Immunotoxicol. 2002;24(3):441–53.PubMedCrossRefGoogle Scholar
  108. 108.
    Weisbord SD, Soule JB, Kimmel PL. Poison on line—acute renal failure caused by oil of wormwood purchased through the Internet. N Engl J Med. 1997;337(12):825–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Benezet-Mazuecos J, de la Fuente A. Electrocardiographic findings after acute absinthe intoxication. Int J Cardiol. 2006;113(2):e48–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Tipparat P, Natakankitkul S, Chamnivikaipong P, Chutiwat S. Characteristics of cannabinoids composition of Cannabis plants grown in Northern Thailand and its forensic application. Forensic Sci Int. 2012;215(1–3):164–70.PubMedCrossRefGoogle Scholar
  111. 111.
    Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther. 2007;29(9):2068–79.PubMedCrossRefGoogle Scholar
  112. 112.
    Garcia-Bueno B, Perez-Nievas BG, Leza JC. Is there a role for the nuclear receptor PPARgamma in neuropsychiatric diseases? Int J Neuropsychopharmacol. 2010;13(10):1411–29.PubMedCrossRefGoogle Scholar
  113. 113.
    Burns TL, Ineck JR. Cannabinoid analgesia as a potential new therapeutic option in the treatment of chronic pain. Ann Pharmacother. 2006;40(2):251–60.PubMedCrossRefGoogle Scholar
  114. 114.
    Croxford JL. Therapeutic potential of cannabinoids in CNS disease. CNS Drugs. 2003;17(3):179–202.PubMedCrossRefGoogle Scholar
  115. 115.
    Molnar J, Petri I, Berek I, Shoyama Y, Nishioka I. The effects of cannabinoids and cannabispiro compounds on Escherichia coli adhesion to tissue culture cells and on leukocyte functions in vitro. Acta Microbiol Hung. 1987;34(3–4):233–40.PubMedGoogle Scholar
  116. 116.
    Naftali T, Mechulam R, Lev LB, Konikoff FM. Cannabis for inflammatory bowel disease. Dig Dis. 2014;32(4):468–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Naftali T, Bar-Lev Schleider L, Dotan I, Lansky EP, Sklerovsky Benjaminov F, Konikoff FM. Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study. Clin Gastroenterol Hepatol. 2013;11(10):1276–80. e1271PubMedCrossRefGoogle Scholar
  118. 118.
    Naftali T, Lev LB, Yablecovitch D, Half E, Konikoff FM. Treatment of Crohn’s disease with cannabis: an observational study. Isr Med Assoc J. 2011;13(8):455–8.PubMedGoogle Scholar
  119. 119.
    Lal S, Prasad N, Ryan M, et al. Cannabis use amongst patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2011;23(10):891–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Storr M, Devlin S, Kaplan GG, Panaccione R, Andrews CN. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20(3):472–80.PubMedCrossRefGoogle Scholar
  121. 121.
    Li RW, David Lin G, Myers SP, Leach DN. Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol. 2003;85(1):61–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Tao X, Schulze-Koops H, Ma L, Cai J, Mao Y, Lipsky PE. Effects of Tripterygium wilfordii hook F extracts on induction of cyclooxygenase 2 activity and prostaglandin E2 production. Arthritis Rheum. 1998;41(1):130–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Sylvester J, Liacini A, Li WQ, Dehnade F, Zafarullah M. Tripterygium wilfordii Hook F extract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-kappa B activities. Mol Pharmacol. 2001;59(5):1196–205.PubMedGoogle Scholar
  124. 124.
    Setty AR, Sigal LH. Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin Arthritis Rheum. 2005;34(6):773–84.PubMedCrossRefGoogle Scholar
  125. 125.
    Ren J, Tao Q, Wang X, Wang Z, Li J. Efficacy of T2 in active Crohn’s disease: a prospective study report. Dig Dis Sci. 2007;52(8):1790–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Liao NS, Ren JA, Fan CG, Wang GF, Zhao YZ, Li JS. Efficacy of polyglycosides of Tripterygium wilfordii in preventing postoperative recurrence of Crohn disease. Zhonghua Wei Chang Wai Ke Za Zhi. 2009;12(2):167–9.PubMedGoogle Scholar
  127. 127.
    Ren J, Wu X, Liao N, et al. Prevention of postoperative recurrence of Crohn’s disease: Tripterygium wilfordii polyglycoside versus mesalazine. J Int Med Res. 2013;41(1):176–87.PubMedCrossRefGoogle Scholar
  128. 128.
    Sun J, Shen X, Dong J, et al. Tripterygium wilfordii hook F as maintenance treatment for Crohn’s disease. Am J Med Sci. 2015;350(5):345–51.PubMedCrossRefGoogle Scholar
  129. 129.
    Lv QW, Zhang W, Shi Q, et al. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): a randomised, controlled clinical trial. Ann Rheum Dis. 2015;74(6):1078–86.PubMedCrossRefGoogle Scholar
  130. 130.
    Zhang W, Shi Q, Zhao LD, et al. The safety and effectiveness of a chloroform/methanol extract of Tripterygium wilfordii Hook F (T2) plus methotrexate in treating rheumatoid arthritis. J Clin Rheumatol. 2010;16(8):375–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Zhen QS, Ye X, Wei ZJ. Recent progress in research on Tripterygium: a male antifertility plant. Contraception. 1995;51(2):121–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Tamayo C, Richardson MA, Diamond S, Skoda I. The chemistry and biological activity of herbs used in Flor-Essence herbal tonic and Essiac. Phytother Res. 2000;14(1):1–14.PubMedCrossRefGoogle Scholar
  133. 133.
    Luo W, Ang CY, Schmitt TC, Betz JM. Determination of salicin and related compounds in botanical dietary supplements by liquid chromatography with fluorescence detection. J AOAC Int. 1998;81(4):757–62.PubMedGoogle Scholar
  134. 134.
    Langmead L, Dawson C, Hawkins C, Banna N, Loo S, Rampton DS. Antioxidant effects of herbal therapies used by patients with inflammatory bowel disease: an in vitro study. Aliment Pharmacol Ther. 2002;16(2):197–205.PubMedCrossRefGoogle Scholar
  135. 135.
    Hawrelak JA, Myers SP. Effects of two natural medicine formulations on irritable bowel syndrome symptoms: a pilot study. J Altern Complement Med. 2010;16(10):1065–71.PubMedCrossRefGoogle Scholar
  136. 136.
    Shishodia S, Aggarwal BB. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene. 2006;25(10):1463–73.PubMedCrossRefGoogle Scholar
  137. 137.
    Parvizpur A, Ahmadiani A, Kamalinejad M. Spinal serotonergic system is partially involved in antinociception induced by Trigonella foenum-graecum (TFG) leaf extract. J Ethnopharmacol. 2004;95(1):13–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Kaviarasan S, Vijayalakshmi K, Anuradha CV. Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods Hum Nutr. 2004;59(4):143–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Pandian RS, Anuradha CV, Viswanathan P. Gastroprotective effect of fenugreek seeds (Trigonella foenum graecum) on experimental gastric ulcer in rats. J Ethnopharmacol. 2002;81(3):393–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Sharma RD, Raghuram TC, Rao NS. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur J Clin Nutr. 1990;44(4):301–6.PubMedGoogle Scholar
  141. 141.
    Gupta A, Gupta R, Lal B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study. J Assoc Physicians India. 2001;49:1057–61.PubMedGoogle Scholar
  142. 142.
    Petit P, Sauvaire Y, Ponsin G, Manteghetti M, Fave A, Ribes G. Effects of a fenugreek seed extract on feeding behaviour in the rat: metabolic-endocrine correlates. Pharmacol Biochem Behav. 1993;45(2):369–74.PubMedCrossRefGoogle Scholar
  143. 143.
    Al-Jenoobi FI, Alam MA, Alkharfy KM, et al. Pharmacokinetic interaction studies of fenugreek with CYP3A substrates cyclosporine and carbamazepine. Eur J Drug Metab Pharmacokinet. 2014;39(2):147–53.PubMedCrossRefGoogle Scholar
  144. 144.
    Huai ZP, Ding ZZ, He SA, Sheng CG. Research on correlations between climatic factors and diosgenin content in Dioscorea zingiberensis Wright. Yao Xue Xue Bao. 1989;24(9):702–6.PubMedGoogle Scholar
  145. 145.
    Juarez-Oropeza MA, Diaz-Zagoya JC, Rabinowitz JL. In vivo and in vitro studies of hypocholesterolemic effects of diosgenin in rats. Int J BioChemiPhysics. 1987;19(8):679–83.CrossRefGoogle Scholar
  146. 146.
    Rosenberg Zand RS, Jenkins DJ, Diamandis EP. Effects of natural products and nutraceuticals on steroid hormone-regulated gene expression. Clin Chim Acta. 2001;312(1–2):213–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Yamada T, Hoshino M, Hayakawa T, et al. Dietary diosgenin attenuates subacute intestinal inflammation associated with indomethacin in rats. Am J Phys. 1997;273(2 Pt 1):G355–64.Google Scholar
  148. 148.
    Gunther M, Laufer S, Schmidt PC. High anti-inflammatory activity of harpagoside-enriched extracts obtained from solvent-modified super- and subcritical carbon dioxide extractions of the roots of Harpagophytum procumbens. Phytochem Anal. 2006;17(1):1–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Eichler O, Koch C. Antiphlogistic, analgesic and spasmolytic effect of harpagoside, a glycoside from the root of Harpagophytum procumbens DC. Arzneimittelforschung. 1970;20(1):107–9.PubMedGoogle Scholar
  150. 150.
    Kaszkin M, Beck KF, Koch E, et al. Downregulation of iNOS expression in rat mesangial cells by special extracts of Harpagophytum procumbens derives from harpagoside-dependent and independent effects. Phytomedicine. 2004;11(7–8):585–95.PubMedCrossRefGoogle Scholar
  151. 151.
    Fiebich BL, Heinrich M, Hiller KO, Kammerer N. Inhibition of TNF-alpha synthesis in LPS-stimulated primary human monocytes by Harpagophytum extract SteiHap 69. Phytomedicine. 2001;8(1):28–30.PubMedCrossRefGoogle Scholar
  152. 152.
    Jang MH, Lim S, Han SM, et al. Harpagophytum procumbens suppresses lipopolysaccharide-stimulated expressions of cyclooxygenase-2 and inducible nitric oxide synthase in fibroblast cell line L929. J Pharmacol Sci. 2003;93(3):367–71.PubMedCrossRefGoogle Scholar
  153. 153.
    Grahame R, Robinson BV. Devils’s Claw (Harpagophytum procumbens): pharmacological and clinical studies. Ann Rheum Dis. 1981;40(6):632.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Chrubasik S, Thanner J, Kunzel O, Conradt C, Black A, Pollak S. Comparison of outcome measures during treatment with the proprietary Harpagophytum extract doloteffin in patients with pain in the lower back, knee or hip. Phytomedicine. 2002;9(3):181–94.PubMedCrossRefGoogle Scholar
  155. 155.
    Douros A, Bronder E, Andersohn F, et al. Drug-induced acute pancreatitis: results from the hospital-based Berlin case-control surveillance study of 102 cases. Aliment Pharmacol Ther. 2013;38(7):825–34.PubMedCrossRefGoogle Scholar
  156. 156.
    Romiti N, Tramonti G, Corti A, Chieli E. Effects of Devil’s Claw (Harpagophytum procumbens) on the multidrug transporter ABCB1/P-glycoprotein. Phytomedicine. 2009;16(12):1095–100.PubMedCrossRefGoogle Scholar
  157. 157.
    Suekawa M, Ishige A, Yuasa K, Sudo K, Aburada M, Hosoya E. Pharmacological studies on ginger. I. Pharmacological actions of pungent constitutents, (6)-gingerol and (6)-shogaol. Aust J Pharm. 1984;7(11):836–48.Google Scholar
  158. 158.
    Ficker C, Smith ML, Akpagana K, et al. Bioassay-guided isolation and identification of antifungal compounds from ginger. Phytother Res. 2003;17(8):897–902.PubMedCrossRefGoogle Scholar
  159. 159.
    Langner E, Greifenberg S, Gruenwald J. Ginger: history and use. Adv Ther. 1998;15(1):25–44.PubMedGoogle Scholar
  160. 160.
    Jung HW, Yoon CH, Park KM, Han HS, Park YK. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chem Toxicol. 2009;47(6):1190–7.PubMedCrossRefGoogle Scholar
  161. 161.
    El-Abhar HS, Hammad LN, Gawad HS. Modulating effect of ginger extract on rats with ulcerative colitis. J Ethnopharmacol. 2008;118(3):367–72.PubMedCrossRefGoogle Scholar
  162. 162.
    Abdul-Hamid M, Salah M. Intervention of ginger or propolis ameliorates methotrexate-induced ileum toxicity. Toxicol Ind Health. 2016;32(2):313–22.PubMedCrossRefGoogle Scholar
  163. 163.
    Chiang HM, Chao PD, Hsiu SL, Wen KC,Tsai SY, Hou YC. Ginger significantly decreased the oral bioavailability of cyclosporine in rats. Am J Chin Med. 2006;34(5):845–55.PubMedCrossRefGoogle Scholar
  164. 164.
    He ZD, Qiao CF, Han QB, et al. Authentication and quantitative analysis on the chemical profile of cassia bark (cortex cinnamomi) by high-pressure liquid chromatography. J Agric Food Chem. 2005;53(7):2424–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Lee HS, Ahn YJ. Growth-inhibiting effects of cinnamomum cassia bark-derived materials on human intestinal bacteria. J Agric Food Chem. 1998;46(1):8–12.PubMedCrossRefGoogle Scholar
  166. 166.
    Kwon BM, Lee SH, Choi SU, et al. Synthesis and in vitro cytotoxicity of cinnamaldehydes to human solid tumor cells. Arch Pharm Res. 1998;21(2):147–52.PubMedCrossRefGoogle Scholar
  167. 167.
    Anderson RA, Broadhurst CL, Polansky MM, et al. Isolation and characterization of polyphenol type-a polymers from cinnamon with insulin-like biological activity. J Agric Food Chem. 2004;52(1):65–70.PubMedCrossRefGoogle Scholar
  168. 168.
    Koh WS, Yoon SY, Kwon BM, Jeong TC, Nam KS, Han MY. Cinnamaldehyde inhibits lymphocyte proliferation and modulates T-cell differentiation. Int J Immunopharmacol. 1998;20(11):643–60.PubMedCrossRefGoogle Scholar
  169. 169.
    • Hagenlocher Y, Hosel A, Bischoff SC, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10(−/−) colitis. J Nutr Biochem. 2016;30:85–92. Optimitistic evidence for decreasing inflammatory symptoms and expression if inflammatory markers with the use of cinnamon extract, as studied in murine models.PubMedCrossRefGoogle Scholar
  170. 170.
    Felter SP, Vassallo JD, Carlton BD, Daston GP. A safety assessment of coumarin taking into account species-specificity of toxicokinetics. Food Chem Toxicol. 2006;44(4):462–75.PubMedCrossRefGoogle Scholar
  171. 171.
    Stormer FC, Reistad R, Alexander J. Glycyrrhizic acid in liquorice—evaluation of health hazard. Food Chem Toxicol. 1993;31(4):303–12.PubMedCrossRefGoogle Scholar
  172. 172.
    Turpie AG, Runcie J, Thomson TJ. Clinical trial of deglycyrrhizinized liquorice in gastric ulcer. Gut. 1969;10(4):299–302.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Tewari SN, Wilson AK. Deglycyrrhizinated liquorice in duodenal ulcer. Practitioner. 1973;210(260):820–3.PubMedGoogle Scholar
  174. 174.
    Eriksson JW, Carlberg B, Hillorn V. Life-threatening ventricular tachycardia due to liquorice-induced hypokalaemia. J Intern Med. 1999;245(3):307–10.PubMedCrossRefGoogle Scholar
  175. 175.
    Elinav E, Chajek-Shaul T. Licorice consumption causing severe hypokalemic paralysis. Mayo Clin Proc. 2003;78(6):767–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Janse A, van Iersel M, Hoefnagels WH, Olde Rikker MG. The old lady who liked liquorice: hypertension due to chronic intoxication in a memory-impaired patient. Neth J Med. 2005;63(4):149–50.PubMedGoogle Scholar
  177. 177.
    Farese RV Jr, Biglieri EG, Shackleton CH, Irony I, Gomez-Fontes R. Licorice-induced hypermineralocorticoidism. N Engl J Med. 1991;325(17):1223–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Gherman C, Culea M, Cozar O. Comparative analysis of some active principles of herb plants by GC/MS. Talanta. 2000;53(1):253–62.PubMedCrossRefGoogle Scholar
  179. 179.
    Green BG, McAuliffe BL. Menthol desensitization of capsaicin irritation. Evidence of a short-term anti-nociceptive effect. Physiol Behav. 2000;68(5):631–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Shapiro S, Meier A, Guggenheim B. The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol Immunol. 1994;9(4):202–8.PubMedCrossRefGoogle Scholar
  181. 181.
    el-Naghy MA, Maghazy SN, Fadl-Allah EM, el-Gendy ZK. Fungistatic action of natural oils and fatty acids on dermatophytic and saprophytic fungi. Zentralbl Mikrobiol. 1992;147(3–4):214–20.PubMedGoogle Scholar
  182. 182.
    Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol. 1998;60(2):117–24.PubMedCrossRefGoogle Scholar
  183. 183.
    Grigoleit HG, Grigoleit P. Gastrointestinal clinical pharmacology of peppermint oil. Phytomedicine. 2005;12(8):607–11.PubMedCrossRefGoogle Scholar
  184. 184.
    Rees WD, Evans BK, Rhodes J. Treating irritable bowel syndrome with peppermint oil. Br Med J. 1979;2(6194):835–6.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Shavakhi A, Ardestani SK, Taki M, Goli M, Keshteli AH. Premedication with peppermint oil capsules in colonoscopy: a double blind placebo-controlled randomized trial study. Acta Gastroenterol Belg. 2012;75(3):349–53.PubMedGoogle Scholar
  186. 186.
    McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res. 2006;20(8):619–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Haider Rahman
    • 1
  • Marina Kim
    • 2
  • Galen Leung
    • 3
  • Jesse A. Green
    • 4
  • Seymour Katz
    • 5
    • 6
  1. 1.Department of Internal MedicineAlbany Medical CenterAlbanyUSA
  2. 2.Division of GastroenterologyNew York Presbyterian Brooklyn Methodist Hospital Weill Cornell College of MedicineBrooklynUSA
  3. 3.New York University School of MedicineNew YorkUSA
  4. 4.Perelman School of Medicine, Division of GastroenterologyUniversity of Pennsylvania, Penn Presbyterian Medical CenterPhiladelphiaUSA
  5. 5.Division of GastroenterologyNew York University School of Medicine NYC North Shore University – Long Island Jewish Hospital SystemManhassetUSA
  6. 6.St. Francis HospitalRoslynUSA

Personalised recommendations