Current Treatment Options in Gastroenterology

, Volume 8, Issue 4, pp 347–352 | Cite as

Obesity and gastrointestinal sensory-motor function

  • G. Anton Decker
  • Michael D. Crowell

Opinion statement

Obesity has become a significant public health problem in the United States and has been associated with significant morbidity and mortality. Alterations in gastrointestinal sensory-motor function are now recognized to be associated with obesity and may be the cause of functional gastrointestinal symptoms commonly seen in these patients. The gut peptides are intimately involved in this process and may provide attractive therapeutic targets in the fight against this very morbid disease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Flegal KM, Carroll MD, Ogden CL, Johnson CL: Prevalence and trends in obesity among US adults, 1900–2000. JAMA 2002, 288: 1723–1727.PubMedCrossRefGoogle Scholar
  2. 2.
    Callaway CW: Obesity. Public Health Rep 1987, Suppl:26–29.Google Scholar
  3. 3.
    Talley NJ, Quan C, Jones MP, Horowitz M: Association of upper and lower gastrointestinal tract symptoms with body mass index in an Australian cohort. Neurogastroenterol Motil 2004, 16: 413–419.PubMedCrossRefGoogle Scholar
  4. 4.
    Delgado-Aros S, Locke GR 3rd, Camilleri M, et al.: Obesity is associated with increased risk of gastrointestinal symptoms: a population-based study. Am J Gastroenterol 2004, 99: 1801–1806.PubMedCrossRefGoogle Scholar
  5. 5.
    Talley NJ, Howell S, Poulton R: Obesity and chronic gastrointestinal tract symptoms in young adults: a birth cohort study. Am J Gastroenterol 2004, 99: 1807–1814.PubMedCrossRefGoogle Scholar
  6. 6.
    Locke GR 3rd, Talley NJ, Fett SL, et al.: Risk factors associated with symptoms of gastroesophageal reflux. Am J Med 1999, 106: 642–649.PubMedCrossRefGoogle Scholar
  7. 7.
    Romero Y, Cameron AJ, Locke GR 3rd, et al.: Familial aggregation of gastroesophageal reflux in patients with Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 1997, 113: 1449–1456.PubMedCrossRefGoogle Scholar
  8. 8.
    Kay L, Jorgensen T: Epidemiology of upper dyspepsia in a random population. Prevalence, incidence, natural history, and risk factors. Scand J Gastroenterol 1994, 29: 2–6.PubMedGoogle Scholar
  9. 9.
    Isolauri J, Laippala P: Prevalence of symptoms suggestive of gastro-oesophageal reflux disease in an adult population. Ann Med 1995, 27: 67–70.PubMedGoogle Scholar
  10. 10.
    Lagergren J, Bergstrom R, Nyren O: No relation between body mass and gastro-oesophageal reflux symptoms in a Swedish population based study. Gut 2000, 47: 26–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Beauchamp G: Gastroesophageal reflux and obesity. Surg Clin North Am 1983, 63: 869–876.PubMedGoogle Scholar
  12. 12.
    O’Brien TF Jr: Lower esophageal sphincter pressure (LESP) and esophageal function in obese humans. J Clin Gastroenterol 1980, 2: 145–148.PubMedCrossRefGoogle Scholar
  13. 13.
    Lundell L, Ruth M, Sandberg N, Bove-Nielsen M: Does massive obesity promote abnormal gastroesophageal reflux? Dig Dis Sci 1195, 40: 1632–1635.CrossRefGoogle Scholar
  14. 14.
    Fisher BL, Pennathur A, Mutnick JL, Little AG: Obesity correlates with gastroesophageal reflux. Dig Dis Sci 1999, 44: 2290–2294.PubMedCrossRefGoogle Scholar
  15. 15.
    Fraser-Moodie CA, Norton B, Gornall C, et al.: Weight loss has an independent beneficial effect on symptoms of gastro-oesophageal reflux in patients who are overweight. Scan J Gastroenterol 1999, 34: 337–340.CrossRefGoogle Scholar
  16. 16.
    Kjellin A, Ramel S, Rossner S, Thor K: Gastroesophageal reflux in obese patients is not reduced by weight reduction. Scan J Gastroenterol 1996, 31: 1047–1051.Google Scholar
  17. 17.
    Mathus-Vliegen LM, Tytgat GN: Twenty-four-hour pH measurements in morbid obesity: effects of massive overweight, weight loss and gastric distension.[see comment]. Eur J Gastroenterol Hepatol 1996, 8: 635–640.PubMedGoogle Scholar
  18. 18.
    Loro AJ, Orleans CS: Binge eating in obesity: preliminary findings and guidelines for behavioral analysis and treatment. Addictive Behavior 1981, 6: 155–156.CrossRefGoogle Scholar
  19. 19.
    Crowell MD, Cheskin LJ, Musial F: Prevalence of gastrointestinal symptoms in obese and normal weight binge eaters. Am J Gastroenterol 1994, 89: 387–391.PubMedGoogle Scholar
  20. 20.
    Manning AP, Thompson WG, Heaton KW, Morris AF: Towards positive diagnosis of the irritable bowel. Br Med J 1978, 2: 653–654.PubMedGoogle Scholar
  21. 21.
    Wisen O, Hellstrom PM: Gastrointestinal motility in obesity. J Inten Med 1995, 237: 411–418.Google Scholar
  22. 22.
    Wright RA, Krinsky S, Fleeman C, et al.: Gastric emptying and obesity. Gastroenterology 1983, 84: 747–751.PubMedGoogle Scholar
  23. 23.
    Zahorska-Markiewicz B, Jonderko K, Lelek A, Skrzypek D: Gastric emptying in obesity. Hum Nutr Clin Nutr 1986, 40: 309–313.PubMedGoogle Scholar
  24. 24.
    Horowitz M, Collins PJ, Harding PE, Shearman DJ: Abnormalities of gastric emptying in obese patients. Int J Obes Relat Metab Disord 1983, 7: 415–421.Google Scholar
  25. 25.
    Horowitz M, Collins PJ, Shearman DJ: Effects of increasing the caloric/osmotic content of the liquid component of a mixed solid and liquid meal on gastric emptying in obese subjects. Hum Nutr Clin Nutr 1986, 40: 51–56.PubMedGoogle Scholar
  26. 26.
    Maddox A, Horowitz M, Wishart J, Collins P: Gastric and esophageal emptying in obesity. Scand J Gastroenterol 1989, 24: 593–598.PubMedGoogle Scholar
  27. 27.
    Sasaki H, Nagulesparan M, Dubois A: Hypergastrinemia in obese noninsulin-dependent diabetes: a possible reflection of high prevalence of vagal dysfunction. J Clin Endocrinol Metab 1983, 56: 744–750.PubMedCrossRefGoogle Scholar
  28. 28.
    Barkin JS, Reiner DK, Goldberg RI, et al.: The effects of morbid obesity and the Garren-Edwards gastric bubble on solid phase gastric emptying. Am J Gastroenterol 1988, 83: 1364–1367.PubMedGoogle Scholar
  29. 29.
    French SJ, Murray B, Rumsey RD, et al.: Preliminary studies on the gastrointestinal responses to fatty meals in obese people. Int J Obes Relat Metab Disord 1993, 17: 295–300.PubMedGoogle Scholar
  30. 30.
    Verdich C, Madsen JL, Toubro S, et al.: Effect of obesity and major weight reduction on gastric emptying. Int J Obes Metal Disord, 2000, 24: 899–905.CrossRefGoogle Scholar
  31. 31.
    Pieramico O, Malfertheiner P, Nelson DK, et al.: Interdigestive gastroduodenal motility and cycling of putative regulatory hormones in severe obesity. Scand J Gastroenterol 1992, 27: 538–544.PubMedGoogle Scholar
  32. 32.
    Wisen O, Johansson C: Gastrointestinal function in obesity: motility, secretion, and absorption following a liquid test meal. Metabolism 1992, 41: 390–395.PubMedCrossRefGoogle Scholar
  33. 33.
    Granstrom L, Backman L: Stomach distension in extremely obese and in normal subjects. Acta Chir Scand 1985, 151: 367–370.PubMedGoogle Scholar
  34. 34.
    Geliebter A, Schachter S, Lohmann-Walter C, et al.: Reduced stomach capacity in obese subjects after dieting. Am J Clin Nutr 1996, 63: 170–173.PubMedGoogle Scholar
  35. 35.
    Geliebter A: Gastric distension and gastric capacity in relation to food intake in humans. Physiol Behav 1988, 44: 665–668.PubMedCrossRefGoogle Scholar
  36. 36.
    Azpiroz F, Malagelada JR: Isobaric intestinal distension in humans: sensorial relay and reflex gastric relaxation. Am J Physiol 1990, 258: G202-G207.PubMedGoogle Scholar
  37. 37.
    Kuiken SD, Samsom M, Camilleri M, et al.: Development of a test to measure gastric accommodation in humans. Am J Physiol 1999, 277: G1217-B1221.PubMedGoogle Scholar
  38. 38.
    Delgado-Aros S, Cremonini F, Castillo JE, et al.: Independent influences of body mass and gastric volumes on satiation in humans. Gastroenterology 2004, 126: 432–440.PubMedCrossRefGoogle Scholar
  39. 39.
    Klatt S, Pieramico O, Guthner C, et al.: Proximal gastric motility functions are normal in severe obesity. Digestion, 1997, 58: 115–119.PubMedCrossRefGoogle Scholar
  40. 40.
    Stacher G: Effects of cholecystokinin and caerulein on human eating behavior and pain sensation: a review. Psychoneuroendocrinology 1986, 11: 39–48.PubMedCrossRefGoogle Scholar
  41. 41.
    Moos AB, McLaughlin CL, Baile CA: Effects on CCK on gastrointestinal function in lean and obese Zucker rats. Peptides 1982, 3: 619–622.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith GP, Gibbs J: Gut peptides and the control of meal size in humans. Clinical Neuropharmacology 1992, 15: (Suppl 1) 703A.PubMedGoogle Scholar
  43. 43.
    Smith GP, Gibbs: Role of CCK in satiety and appetite control. Clinical Neuropharmacology 1992, 15(Suppl 1):476A.PubMedGoogle Scholar
  44. 44.
    Lloyd KC, Maxwell V, Kovacs TO, et al.: Cholecystokinin receptor antagonist MK-329 blocks intestinal fatinduced inhibition of meal-stimulated gastric acid secretion. Gastroenterology 1992, 102: 131–138.PubMedGoogle Scholar
  45. 45.
    Ludtke FE, Golenhofen K, Kohne C: Direct effects of cholecystokinin on human gastric motility. Digestion 1988, 1988: 4.Google Scholar
  46. 46.
    Smith GP: The therapeutic potential of cholecystokinin. Int J Obes, 1984. 8(Suppl 1):35–38.PubMedGoogle Scholar
  47. 47.
    Gibbs J, Young RC, Smith GP: Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973, 84: 488–495.PubMedCrossRefGoogle Scholar
  48. 48.
    West DB, Fey D, Woods SC: Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 1984, 246: (5 Pt 2) R776-R787.PubMedGoogle Scholar
  49. 49.
    Stacher G, Steinringer H, Schmierer G, et al.: Cholecystokinin octapeptide decreases intake of solid food in man. Peptides 1982, 3: 133–136.PubMedCrossRefGoogle Scholar
  50. 50.
    Pi-Sunyer X, Kissileff HR, Thornton J, Smith GP: C-terminal octapeptide of cholecystokinin decreases food intake in obese men. Physiol Behav 1982, 29: 627–630.PubMedCrossRefGoogle Scholar
  51. 51.
    Beglinger C, Degen L, Matzinger D, et al.: Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol 2001, 280: R1149-R1154.PubMedGoogle Scholar
  52. 52.
    Hewson G, Leighton GE, Hill RG, Hughes J: The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of the action of endogenous cholecystokinin. British Journal of Pharmacology 1988, 93: 79–84.PubMedGoogle Scholar
  53. 53.
    Moran TH, Ameglio PJ, Peyton HJ, et al.: Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. Am J Physiol 1993, 265: R620-R624.PubMedGoogle Scholar
  54. 54.
    Reidelberger RD, O’Rourke MF: Potent cholecystokinin antagonist L 364718 stimulates food intake in rats. Am J Physiol 1989, 257: R1512-R1518.PubMedGoogle Scholar
  55. 55.
    Toshinai K, Mondal MS, Nakazato M, et al.: Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 2001, 281: 1220–1225.PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshihara F, Kojima M, Hosoda H, et al.: Ghrelin: a novel peptide for growth hormone release and feeding regulation. Curr Opin Clin Nutr Metal Care 2002, 5: 391–395.CrossRefGoogle Scholar
  57. 57.
    Trudel L, Tomasetto C, Rio MC, et al.: Ghrelin/motilinrelated peptide is a potent prokinetic to reverse gastric postoperative ileus in rat. Am J Physiol Gastrointest Liver Physiol 2002, 282: G948-G952.PubMedGoogle Scholar
  58. 58.
    Cummings DE: Plasma ghrelin levels after dietinduced weight loss or gastric bypass surgery. N Engl J Med 2002, 346: 1623–1630.PubMedCrossRefGoogle Scholar
  59. 59.
    Cummings DE, Purnell JQ, Frayo RS, et al.: A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50: 1714–1719.PubMedCrossRefGoogle Scholar
  60. 60.
    English PJ, Ghatei MA, Malik IA, et al.: Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 2002, 87: 2894.CrossRefGoogle Scholar
  61. 61.
    Naveilhan P, Hassani H, Canals JM, et al.: Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat Med 1999, 5: 1188–1193.PubMedCrossRefGoogle Scholar
  62. 62.
    Batterham RL, Cowley MA, Small CJ, et al.: Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002, 418: 650–654.PubMedCrossRefGoogle Scholar
  63. 63.
    Batterham RL, Le Roux CW, Cohen MA, et al.: Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab, 2003, 88: 3989–3992.PubMedCrossRefGoogle Scholar
  64. 64.
    Batterham RL, Cohen MA, Ellis SM, et al.: Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003, 349: 941–948.PubMedCrossRefGoogle Scholar
  65. 65.
    Meier JJ, Gallwitz B, Salmen S, et al.: Normalization of glucose concentrations an deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab, 2003, 88: 2719–2725.PubMedCrossRefGoogle Scholar
  66. 66.
    Schirra J, Houck P, Wank U, et al.: Effects of glucagonlike peptide-1 (7-36) amide on antro-pyloro-duodenall motility in the interdigestive state and with duodenal lipid perfusion in humans. Gut 2000, 46: 622–631.PubMedCrossRefGoogle Scholar
  67. 67.
    Verdich C, Flint A, Gutzwiller JP, et al.: A meta-Analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001, 86: 4382–4389.PubMedCrossRefGoogle Scholar
  68. 68.
    Tang C, Vrang MN, Larson PJ: Glucagon-like peptide containing pathways in the regulation of feeding behavior. Int J Obes Relat Metab Disord 2001, 25(Suppl 5):S42-S47.CrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • G. Anton Decker
  • Michael D. Crowell
    • 1
  1. 1.Division of Gastroenterology & HepatologyMayo Clinic ScottsdaleScottsdaleUSA

Personalised recommendations