Vessel Wall Imaging of Cerebrovascular Disorders

  • Kyle C. Kern
  • David S. LiebeskindEmail author
Cerebrovascular Disease and Stroke (S Silverman, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cerebrovascular Disease and Stroke


Purpose of review

High-resolution magnetic resonance vessel wall imaging (VWI) permits direct visualization of intracranial arterial wall pathology, providing diagnostic and prognostic information that is complementary to conventional imaging techniques. We highlight the most recent studies that have advanced the clinical application of VWI.

Recent findings

VWI aids in distinguishing and diagnosing intracranial atherosclerotic disease (ICAD), intracranial dissections, central nervous system vasculitis, reversible cerebral vasoconstriction syndrome, and moyamoya disease. VWI may help predict recurrent stroke in ICAD, treatment effects in vasculitis, and disease progression in moyamoya. VWI also identifies ruptured intracranial aneurysms and may predict stability of unruptured aneurysms.


Implementing VWI as an adjunctive imaging technique may permit earlier and noninvasive discrimination of rare vasculopathies. However the prognostic utility of VWI for more common cerebrovascular pathologies requires further validation.


Cerebrovascular disorders Magnetic resonance imaging Intracranial atherosclerosis CNS vasculitis Moyamoya disease Intracranial aneurysm 


Compliance with Ethical Standards

Conflict of Interest

Kyle C. Kern declares that he has no conflict of interest.

David S. Liebeskind declares that he has no conflict of interest.

Human and Animal Rights and Informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Harteveld AA, Denswil NP, Van Hecke W, Kuijf HJ, Vink A, Spliet WGM, et al. Ex vivo vessel wall thickness measurements of the human circle of Willis using 7T MRI. Atherosclerosis. 2018;273:106–14.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology. 1991;181:655–60.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lindenholz A, Van Der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology. 2018;286:12–28.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Felmlee JP, Ehman RL. Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology. 1987;164:559–64.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Song HK, Wright AC, Wolf RL, Wehrli FW. Multislice double inversion pulse sequence for efficient black-blood MRI. Magn Reson Med. 2002;47:616–20.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Busse RF, Brau ACS, Vu A, Michelich CR, Bayram E, Kijowski R, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med. 2008;60:640–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    • Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2017;38:218–29 This review provides consensus recommendations for VWI by highlighting imaging protocol recommendations and grading the applicability of adjunctive VWI for various cerebrovascular disorders.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Eiden S, Beck C, Venhoff N, Elsheikh S, Ihorst G, Urbach H, et al. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla. PLoS One. 2019;14:e0213514.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Xu W-H, Li M-L, Gao S, Ni J, Zhou L-X, Yao M, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis. 2010;212:507–11.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Yang WQ, Huang B, Liu XT, Liu HJ, Li PJ, Zhu WZ. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3 T. Eur J Radiol. 2014;83:e49–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Sacco RL, Roberts JK, Boden-Albala B, Gu Q, Lin I-F, Kargman DE, et al. Race-ethnicity and determinants of carotid atherosclerosis in a multiethnic population: the Northern Manhattan Stroke Study. Stroke. 1997;28:929–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong LKS. Global burden of intracranial atherosclerosis. Int J Stroke. 2006;1:158–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Sing WK, Huan L. Long-term mortality and recurrent stroke risk among Chinese stroke patients with predominant intracranial atherosclerosis. Stroke. 2003;34:2361–6.CrossRefGoogle Scholar
  14. 14.
    Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005;352:1305–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383:333–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Kasner SE, Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, et al. Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis. Circulation. 2006;113:555–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Arenillas JF, Dieleman N, Bos D. Intracranial arterial wall imaging: techniques, clinical applicability, and future perspectives. Int J Stroke. 2019;0:174749301984094.Google Scholar
  18. 18.
    • Kwee RM, Qiao Y, Liu L, Zeiler SR, Wasserman BA. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI. Neuroradiology. 2019;61:651–7. Atherosclerotic plaque enhancement on VWI may have predictive value in ICAD. Symptomatic, culprit plaques were more likely to enhance, and all 6 recurrent ischemic events were attributed to culprit plaques.CrossRefPubMedGoogle Scholar
  19. 19.
    Sui B, Gao P, Lin Y, Jing L, Qin H. Distribution and features of middle cerebral artery atherosclerotic plaques in symptomatic patients: a 3.0 T high-resolution MRI study. Neurol Res. 2015;37:391–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Xu W-H, Li M-L, Gao S, Ni J, Zhou L-X, Yao M, et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance. Stroke. 2011;42:2957–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang B, Yang W-Q, Liu X-T, Liu H-J, Li P-J, Lu H-K. Basilar artery atherosclerotic plaques distribution in symptomatic patients: a 3.0T high-resolution MRI study. Eur J Radiol. 2013;82:e199–203.PubMedCrossRefGoogle Scholar
  22. 22.
    Chung GH, Kwak HS, Hwang SB, Jin GY. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis. Eur J Radiol. 2012;81:4069–74.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Der Kolk AG, Zwanenburg JJM, Brundel M, Biessels GJ, Visser F, Luijten PR, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke. 2011;42:2478–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao D-L, Deng G, Xie B, Ju S, Yang M, Chen X-H, et al. High-resolution MRI of the vessel wall in patients with symptomatic atherosclerotic stenosis of the middle cerebral artery. J Clin Neurosci. 2015;22:700–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Shi M-C, Wang S-C, Zhou H-W, Xing Y-Q, Cheng Y-H, Feng J-C, et al. Compensatory remodeling in symptomatic middle cerebral artery atherosclerotic stenosis: a high-resolution MRI and microemboli monitoring study. Neurol Res. 2012;34:153–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen XY, Wong KS, Lam WWM, Zhao H-L, Ng HK. Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study. Cerebrovasc Dis. 2008;25:74–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao D-L, Li C, Chen X-H, Ju S, Deng G, Xie B, et al. Reproducibility of 3.0T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques. J Stroke Cerebrovasc Dis. 2019;28:1824–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Xu W-H, Li M-L, Gao S, Ni J, Yao M, Zhou L-X, et al. Middle cerebral artery intraplaque hemorrhage: prevalence and clinical relevance. Ann Neurol. 2012;71:195–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging. 2002;15:62–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Millon A, Boussel L, Brevet M, Mathevet J-L, Canet-Soulas E, Mory C, et al. Clinical and histological significance of gadolinium enhancement in carotid atherosclerotic plaque. Stroke. 2012;43:3023–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Aydin F. Do human intracranial arteries lack vasa vasorum? A comparative immunohistochemical study of intracranial and systemic arteries. Acta Neuropathol. 1998;96:22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Qiao Y, Zeiler SR, Mirbagheri S, Leigh R, Urrutia V, Wityk R, et al. Plaque enhancement 2014 cerebrovasclular events. Radiology. 2014;271:534–42.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gupta A, Baradaran H, Al-Dasuqi K, Knight-Greenfield A, Giambrone AE, Delgado D, et al. Gadolinium enhancement in intracranial atherosclerotic plaque and ischemic stroke: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5:e003816.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Vergouwen MDI, Silver FL, Mandell DM, Mikulis DJ, Swartz RH. Eccentric narrowing and enhancement of symptomatic middle cerebral artery stenoses in patients with recent ischemic stroke. Arch Neurol. 2011;68:338–42.PubMedGoogle Scholar
  35. 35.
    Skarpathiotakis M, Mandell DM, Swartz RH, Tomlinson G, Mikulis DJ. 3T MRI 2012 ICAS plaque enhancement in ischemic stroke. Am J Neuroradiol. 2013;34:299–304.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim J-M, Jung K-H, Sohn C-H, Moon J, Shin J-H, Park J, et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence. Int J Stroke. 2016;11:171–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Power S, Matouk C, Casaubon LK, Silver FL, Krings T, Mikulis DJ, et al. Vessel wall magnetic resonance imaging in acute ischemic stroke: effects of embolism and mechanical thrombectomy on the arterial wall. Stroke. 2014;45:2330–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Abraham P, Pannell JS, Santiago-Dieppa DR, Cheung V, Steinberg J, Wali A, et al. Vessel wall signal enhancement on 3-T MRI in acute stroke patients after stent retriever thrombectomy. Neurosurg Focus. 2017;42:E20.PubMedCrossRefGoogle Scholar
  39. 39.
    Renu A, Laredo C, Lopez-Rueda A, Llull L, Tudela R, San-Roman L, et al. Vessel wall enhancement and blood-cerebrospinal fluid barrier disruption after mechanical thrombectomy in acute ischemic Stroke. Stroke. 2017;48:651–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lee VH, Brown RD, Mandrekar JN, Mokri B. Incidence and outcome of cervical artery dissection: a population-based study. Neurology. 2006;67:1809–12.PubMedCrossRefGoogle Scholar
  41. 41.
    •• Shin J, Chung J-W, Park MS, Lee H, Cha J, Seo W-K, et al. Outcomes after ischemic stroke caused by intracranial atherosclerosis vs dissection. Neurology. 2018;91:e1751–9. This Korean study used VWI to evaluate acute stroke patients with focal, intracranial stenoses of unclear etiology and identified more than one third as intracranial dissections by their imaging criteria. Compared with atherosclerotic lesions, patients with dissections had similar 90-day outcomes, but were less likely to have recurrent events and more likely to have improvement in the focal stenosis on follow-up imaging.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Asaithambi G, Saravanapavan P, Rastogi V, Khan S, Bidari S, Khanna AY, et al. Isolated middle cerebral artery dissection: a systematic review. Int J Emerg Med. 2014;7:44.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kwon JY, Kim N-Y, Suh DC, Kang D-W, Kwon SU, Kim JS. Intracranial and extracranial arterial dissection presenting with ischemic stroke: lesion location and stroke mechanism. J Neurol Sci. 2015;358:371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    • Debette S, Compter A, Labeyrie M-A, Uyttenboogaart M, Metso TM, Majersik JJ, et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol. 2015;14:640–54 This article summarizes the current literature on spontaneous intracranial artery dissections, which are rare but are being detected more commonly with VWI, particularly in Asian populations.PubMedCrossRefGoogle Scholar
  45. 45.
    Bang OY, Toyoda K, Arenillas JF, Liu L, Kim JS. Intracranial large artery disease of non-atherosclerotic origin: recent progress and clinical implications. J Stroke. 2018;20:208–17.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shin DH, Hong JM, Lee JS. Nasim R, Sohn S Il, Kim SJ, et al. Comparison of potential risks between intracranial and extracranial vertebral artery dissections. Eur Neurol. 2014;71:305–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Sato S, Toyoda K, Matsuoka H, Okatsu H, Kasuya J, Takada T, et al. Isolated anterior cerebral artery territory infarction: dissection as an etiological mechanism. Cerebrovasc Dis. 2010;29:170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ono H, Nakatomi H, Tsutsumi K, Inoue T, Teraoka A, Yoshimoto Y, et al. Symptomatic recurrence of intracranial arterial dissections. Stroke. 2012;44:126–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Ro A, Kageyama N, Abe N, Takatsu A, Fukunaga T. Intracranial vertebral artery dissection resulting in fatal subarachnoid hemorrhage: clinical and histopathological investigations from a medicolegal perspective. J Neurosurg. 2009;110:948–54.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Takano K, Yamashita S, Takemoto K, Inoue T, Kuwabara Y, Yoshimitsu K. MRI of intracranial vertebral artery dissection: evaluation of intramural haematoma using a black blood, variable-flip-angle 3D turbo spin-echo sequence. Neuroradiology. 2013;55:845–51.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Chung J-W, Kim BJ, Choi BS, Sohn CH, Bae H-J, Yoon B-W, et al. High-resolution magnetic resonance imaging reveals hidden etiologies of symptomatic vertebral arterial lesions. J Stroke Cerebrovasc Dis. 2014;23:293–302.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Han M, Rim NJ, Lee JS, Kim SY, Choi JW. Feasibility of high-resolution MR imaging for the diagnosis of intracranial vertebrobasilar artery dissection. Eur Radiol. 2014;24:3017–24.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gao PH, Yang L, Wang G, Guo L, Liu X, Zhao B. Symptomatic unruptured isolated middle cerebral artery dissection: clinical and magnetic resonance imaging features. Clin Neuroradiol. 2016;26:81–91.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Park MS, Cha J, Chung J-W, Seo W-K, Kim G-M, Bang OY. Arterial dissection as a cause of intracranial stenosis in East Asians. J Am Coll Cardiol. 2017. p. 2205–6.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Singhal AB, Topcuoglu MA, Fok JW, Kursun O, Nogueira RG, Frosch MP, et al. Reversible cerebral vasoconstriction syndromes and primary angiitis of the central nervous system: clinical, imaging, and angiographic comparison. Ann Neurol. 2016;79:882–94.CrossRefGoogle Scholar
  56. 56.
    Salvarani C, Brown RD, Calamia KT, Christianson TJH, Weigand SD, Miller DV, et al. Primary central nervous system vasculitis: analysis of 101 patients. Ann Neurol. 2007;62:442–51.PubMedCrossRefGoogle Scholar
  57. 57.
    Hajj-Ali RA, Singhal AB, Benseler S, Molloy E, Calabrese LH. Primary angiitis of the CNS. Lancet Neurol. 2011;10:561–72.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Harris KG, Tran DD, Sickels WJ, Cornell SH, Yuh WT. Diagnosing intracranial vasculitis: the roles of MR and angiography. AJNR Am J Neuroradiol. 1994;15:317–30.PubMedGoogle Scholar
  59. 59.
    Duna GF, Calabrese LH. Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system. J Rheumatol. 1995;22:662–7.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Chu CT, Gray L, Goldstein LB, Hulette CM. Diagnosis of intracranial vasculitis: a multi-disciplinary approach. J Neuropathol Exp Neurol. 1998;57:30–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Alrawi A, Trobe JD, Blaivas M, Musch DC. Brain biopsy in primary angiitis of the central nervous system. Neurology. 1999;53:852–5.CrossRefGoogle Scholar
  62. 62.
    Calabrese LH, Dodick DW, Schwedt TJ, Singhal AB. Narrative review: reversible cerebral vasoconstriction syndromes. Ann Intern Med. 2007;146:34–44.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mandell DM, Matouk CC, Farb RI, Krings T, Agid R, Willinsky RA, et al. Vessel Wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke. 2012;860–2. PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Obusez EC, Hui F, Hajj-ali RA, Cerejo R, Calabrese LH, Hammad T, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol. 2014;35:1527–32.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zeiler SR, Qiao Y, Pardo CA, Lim M, Wasserman BA. Vessel wall MRI for targeting biopsies of intracranial vasculitis. AJNR Am J Neuroradiol. 2018;39:2034–6.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Pfefferkorn T, Linn J, Habs M, Opherk C, Cyran C, Ottomeyer C, et al. Black blood MRI in suspected large artery primary angiitis of the central nervous system. J Neuroimaging. 2013;23:379–83.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    • Kesav P, Krishnavadana B, Kesavadas C, Sreedharan SE, Rajendran A, Sukumaran S, et al. Utility of intracranial high-resolution vessel wall magnetic resonance imaging in differentiating intracranial vasculopathic diseases causing ischemic stroke. Neuroradiology. 2019;61:389–96. This study evaluated VWI for diagnosing vasculopathy in the setting of recent stroke with symptomatic stenosis. Adding VWI allowed reclassification of 47.3% of the subjects with stroke of undetermined etiology. Diffuse concentric vs. focal eccentric wall thickening and/or enhancement provided excellent discriminatory power between ICAD and inflammatory vasculopathy.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Miller DV, Salvarani C, Hunder GG, Brown RD, Parisi JE, Christianson TJ, et al. Biopsy findings in primary angiitis of the central nervous system. Am J Surg Pathol. 2009;33:35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Saam T, Habs M, Pollatos O, Cyran C, Pfefferkorn T, Dichgans M, et al. High-resolution black-blood contrast-enhanced T 1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol. 2010;83:182–4.CrossRefGoogle Scholar
  70. 70.
    Tsivgoulis G, Papadimitropoulos GN, Lachanis S, Palaiodimou L, Zompola C, Antonellou R, et al. High-resolution intracranial vessel wall imaging in monitoring treatment response in primary CNS angiitis. Neurologist. 2018;23:188–90.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol. 2012;11:906–17.CrossRefGoogle Scholar
  72. 72.
    Mossa-Basha M, Hwang WD, De Havenon A, Hippe D, Balu N, Becker KJ, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke. 2015;46:1567–73.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Singhal AB, Topcuoglu MA. Glucocorticoid-associated worsening in reversible cerebral vasoconstriction syndrome. Neurology. 2017;88:228–36.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kim JS. Moyamoya disease: epidemiology, clinical features, and diagnosis. J Stroke. 2016;18:2–11.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–37.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Iwama T, Morimoto M, Hashimoto N, Goto Y, Todaka T, Sawada M. Mechanism of intracranial rebleeding in moyamoya disease. Clin Neurol Neurosurg. 1997;99(S2):S187–90.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ryoo S, Cha J, Kim SJ, Choi JW, Ki C-S, Kim KH, et al. High-resolution magnetic resonance wall imaging findings of moyamoya disease. Stroke. 2014;45:2457–60.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Kim YJ, Lee DH, Kwon JY, Kang DW, Suh DC, Kim JS, et al. High resolution MRI difference between moyamoya disease and intracranial atherosclerosis. Eur J Neurol. 2013;20:1311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Yuan M, Liu Z, Wang Z, Li B, Xu L, Xiao X. High-resolution MR imaging of the arterial wall in moyamoya disease. Neurosci Lett. 2015;584:77–82.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wang M, Yang Y, Zhou F, Li M, Liu R, Guan M, et al. The contrast enhancement of intracranial arterial wall on high-resolution MRI and its clinical relevance in patients with moyamoya vasculopathy. Sci Rep. 2017;7:44264.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    •• Roder C, Hauser T-K, Ernemann U, Tatagiba M, Khan N, Bender B. Arterial wall contrast enhancement in progressive moyamoya disease. J Neurosurg. 2019;1–9. American Association of Neurological Surgeons. This study of moyamoya disease evaluated arterial wall enhancement as a predictor of clinical progression within 6 months. Lack of enhancement had a negative predictive value of 95%.
  82. 82.
    Muraoka S, Araki Y, Taoka T, Kawai H, Okamoto S, Uda K, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: contrast-enhanced high-resolution magnetic resonance vessel wall imaging. World Neurosurg. 2018;116:e1114–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Mossa-Basha M, de Havenon A, Becker KJ, Hallam DK, Levitt MR, Cohen WA, et al. Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort. Stroke. 2016;47:1782–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10:626–36.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Nieuwkamp DJ, Setz LE, Algra A, Linn FHH, de Rooij NK, Rinkel GJE. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8:635–42.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RDJ, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Greving JP, Wermer MJH, Brown RDJ, Morita A, Juvela S, Yonekura M, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13:59–66.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Backes D, Rinkel GJE, Greving JP, Velthuis BK, Murayama Y, Takao H, et al. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology. 2017;88:1600–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    • Edjlali M, Guedon A, Ben Hassen W, Boulouis G, Benzakoun J, Rodriguez-Regent C, et al. Circumferential thick enhancement at vessel wall MRI has high specificity for intracranial aneurysm instability. Radiology. 2018;289:181–7. This large study of ruptured and unruptured aneurysms used VWI to differentiate stable and unstable aneurysms. Unstable aneurysms with neurologic symptoms, or morphological changes over time, were associated with grade 3 wall enhancement, while lack of enhancement had an excellent negative predictive value of 94%.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Korja M, Kaprio J. Controversies in epidemiology of intracranial aneurysms and SAH. Nat Rev Neurol. 2015;12:50.PubMedCrossRefGoogle Scholar
  91. 91.
    Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002;360:1267–74.PubMedCrossRefGoogle Scholar
  92. 92.
    • Shimonaga K, Matsushige T, Ishii D, Sakamoto S, Hosogai M, Kawasumi T, et al. Clinicopathological insights from vessel wall imaging of unruptured intracranial aneurysms. Stroke. 2018;49:2516–9 This study provides histopathologic correlation VWI findings for 9 unruptured aneurysms that underwent surgical clipping. Aneurysmal wall enhancement on VWI was associated with thickening of the vessel wall, development of vasa vasorum, and abundant macrophages.PubMedCrossRefGoogle Scholar
  93. 93.
    Nagahata S, Nagahata M, Obara M, Kondo R, Minagawa N, Sato S, et al. Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: a sign of ruptured aneurysm? Clin Neuroradiol. 2016;26:277–83.PubMedCrossRefGoogle Scholar
  94. 94.
    Hu P, Yang Q, Wang D-D, Guan S-C, Zhang H-Q. Wall enhancement on high-resolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm. Neuroradiology. 2016;58:979–85.PubMedCrossRefGoogle Scholar
  95. 95.
    Tian B, Toossi S, Eisenmenger L, Faraji F, Ballweber MK, Josephson SA, et al. Visualizing wall enhancement over time in unruptured intracranial aneurysms using 3D vessel wall imaging. J Magn Reson Imaging. 2019;50:193–200.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu C, Wang X, Degnan AJ, Shi Z, Tian B, Liu Q, et al. Wall enhancement of intracranial unruptured aneurysm is associated with increased rupture risk and traditional risk factors. Eur Radiol. 2018;28:5019–26.PubMedCrossRefGoogle Scholar
  97. 97.
    Lv N, Tang H, Chen S, Wang X, Fang Y, Karmonik C, et al. Morphological parameters related to aneurysm wall enhancement in patients with multiple intracranial aneurysms. World Neurosurg. 2018;114:e338–43.PubMedCrossRefGoogle Scholar
  98. 98.
    Ishii D, Matsushige T, Sakamoto S, Shimonaga K, Akiyama Y, Okazaki T, et al. Decreased antiatherogenic protein levels are associated with aneurysm structure alterations in MR vessel wall imaging. J Stroke Cerebrovasc Dis. 2019;28:2221–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Hartman JB, Watase H, Sun J, Hippe DS, Kim L, Levitt M, et al. Intracranial aneurysms at higher clinical risk for rupture demonstrate increased wall enhancement and thinning on multicontrast 3D vessel wall MRI. Br J Radiol. 2019;92:e20180950.CrossRefGoogle Scholar
  100. 100.
    Fu Q, Guan S, Liu C, Wang K, Cheng J. Clinical significance of circumferential aneurysmal wall enhancement in symptomatic patients with unruptured intracranial aneurysms: a high-resolution MRI study. Clin Neuroradiol. 2018;28:509–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Omodaka S, Endo H, Niizuma K, Fujimura M, Inoue T, Endo T, et al. Circumferential wall enhancement in evolving intracranial aneurysms on magnetic resonance vessel wall imaging. Neurosurgery. 2018;82:638–44.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang G x, Gong M f, Zhang D, Lei S, Yin J b, Gong Z l, et al. Wall enhancement ratio determined by vessel wall MRI associated with symptomatic intracranial aneurysms. Eur J Radiol. 2019;112:88–92.PubMedCrossRefGoogle Scholar
  103. 103.
    Texakalidis P, Hilditch CA, Lehman V, Lanzino G, Pereira VM, Brinjikji W. Vessel wall imaging of intracranial aneurysms: systematic review and meta-analysis. World Neurosurg. 2018;117:453–458.e1.PubMedCrossRefGoogle Scholar
  104. 104.
    Vergouwen MDI, Backes D, van der Schaaf IC, Hendrikse J, Kleinloog R, Algra A, et al. Gadolinium enhancement of the aneurysm wall in unruptured intracranial aneurysms is associated with an increased risk of aneurysm instability: a follow-up Study. Am J Neuroradiol. 2019;40:1112–6.PubMedCrossRefGoogle Scholar
  105. 105.
    •• Matsushige T, Shimonaga K, Mizoue T, Hosogai M, Hashimoto Y, Kaneko M, et al. Focal aneurysm wall enhancement on MRI indicates intraluminal thrombus and the rupture point. World Neurosurg. 2019;127:e578–84 This study followed 60 aneurysms over a mean of 49 months with VWI and found that aneurysmal wall enhancement was associated with aneurysm growth, particularly with the development of daughter sac formation.PubMedCrossRefGoogle Scholar
  106. 106.
    Matouk CC, Mandell DM, Gunel M, Bulsara KR, Malhotra A, Hebert R, et al. Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery. 2013;72:492–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Cornelissen BMW, Leemans EL, Slump CH, Marquering HA, Majoie CBLM, van den Berg R. Vessel wall enhancement of intracranial aneurysms: fact or artifact? Neurosurg Focus. 2019;47:E18.PubMedCrossRefGoogle Scholar
  108. 108.
    Vergouwen MDI, Hendrikse J, van der Kolk AG, Wermer MJH, Versluis MJ, Biessels GJ, et al. 7Tesla vessel wall imaging of the basilar artery in perimesencephalic hemorrhage. Int J Stroke. 2015;10:E31.PubMedCrossRefGoogle Scholar
  109. 109.
    Coutinho JM, Sacho RH, Schaafsma JD, Agid R, Krings T, Radovanovic I, et al. High-resolution vessel wall magnetic resonance imaging in angiogram-negative non-perimesencephalic subarachnoid hemorrhage. Clin Neuroradiol. 2017;27:175–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Comprehensive Stroke Center, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Neurovascular Imaging Research Core, UCLA Comprehensive Stroke Center, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations