Advertisement

Cardiotoxicities of Modern Treatments in Breast Cancer

  • Susan DentEmail author
  • Chiara Melloni
  • Josee Ivars
  • Sarah Sammons
  • Gretchen Kimmick
Cardio-oncology (M Fradley, Section Editor)
  • 91 Downloads
Part of the following topical collections:
  1. Topical Collection on Cardio-oncology

Abstract

Purpose of review

This paper will focus on novel breast cancer therapies used in clinical practice today, as well as review our understanding of standard therapies and their potential impact on cardiovascular health.

Recent findings

Established and novel treatments such as anthracyclines, HER2-targeted agents, and immunotherapy have contributed to improvements in breast cancer outcomes; however, these treatments may be associated with an increased risk of cardiovascular injury. The number of available breast cancer treatments continues to expand, as does the need for health care providers to understand the potential impact of these treatments on cardiovascular health.

Summary

Collaborative approaches in the development of risk stratification, prevention, and surveillance strategies for patients exposed to established and novel breast cancer treatments will facilitate improvements in patient outcomes without compromising their cardiovascular health.

Keywords

Breast cancer Novel treatments Cardiac injury 

Notes

Acknowledgments

The authors would like to thank Erin Campbell, MS, for her editorial contributions to this manuscript.

Compliance with Ethical Standards

Conflict of Interest

Susan Dent has received honorarium from Novartis, Pfizer and Hoffman La-Roche. Chiara Melloni receives support for research from the NICHD (HHSN27500027, HHSN27500043). All industry disclosures are available at: www.dcri.org/about-us/conflict-of-interest/. Josee Ivars declares no potential conflicts of interest. Sarah Sammons reports a grant from Astra Zeneca. Gretchen Kimmick is on the scientific advisory boards of Boehringer Ingelheim, Eisai, Genomic Health and Agendia. Dr. Kimmick is a consultant for AstraZeneca, Novartis, and Pfizer and has received research funding from Bionovo, PUMA, and Roche.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. editors. GLOBOCAN 2012: Estimated cancer incidence, mortality, and prevalence worldwide in 2012 v1.0. World Health Organization International Agency for Research on Cancer web site. http://publications.iarc.fr/Databases/Iarc-Cancerbases/GLOBOCAN-2012-Estimated-Cancer-Incidence-Mortality-And-Prevalence-Worldwide-In-2012-V1.0-2012. Accessed March 28, 2019.
  2. 2.
    American Cancer Society. Cancer facts and figures 2016. American Cancer Society web site. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2016/cancer-facts-and-figures-2016.pdf. Accessed March 28, 2019.
  3. 3.
    Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.CrossRefGoogle Scholar
  4. 4.
    Reulen RC, Winter DL, Frobisher C, Lancashire ER, Stiller CA, Jenney ME, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010;304(2):172–9.CrossRefGoogle Scholar
  5. 5.
    DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64(4):252–71.CrossRefGoogle Scholar
  6. 6.
    Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–41.CrossRefGoogle Scholar
  7. 7.
    DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64(1):52–62.CrossRefGoogle Scholar
  8. 8.
    Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66.CrossRefGoogle Scholar
  9. 9.
    Bodai BI, Tuso P. Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm J. 2015;19(2):48–79.CrossRefGoogle Scholar
  10. 10.
    Runowicz CD, Leach CR, Henry L, Henry KS, Mackey HT, Cowens-Alvarado RL, et al. American Cancer society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. J Clin Oncol. 2016;34(6):611–35.CrossRefGoogle Scholar
  11. 11.
    Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309–25.CrossRefGoogle Scholar
  12. 12.
    Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013;34(15):1102–11.CrossRefGoogle Scholar
  13. 13.
    Aleman BM, Moser EC, Nuver J, Suter TM, Maraldo MV, Specht L, et al. Cardiovascular disease after cancer therapy. EJC Suppl. 2014;12(1):18–28.CrossRefGoogle Scholar
  14. 14.
    Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.CrossRefGoogle Scholar
  15. 15.
    Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337.CrossRefGoogle Scholar
  16. 16.
    Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112(12):1980–4.CrossRefGoogle Scholar
  17. 17.
    Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64(9):938–45.CrossRefGoogle Scholar
  18. 18.
    Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911.CrossRefGoogle Scholar
  19. 19.
    Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.CrossRefGoogle Scholar
  20. 20.
    Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7.CrossRefGoogle Scholar
  21. 21.
    Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR Jr, das Dores Cruz F, Gonçalves Brandão SM, Rigaud VOC, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018;71(20):2281–90.CrossRefGoogle Scholar
  22. 22.
    Munster P, Krop IE, LoRusso P, Ma C, Siegel BA, Shields AF, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody–liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer. 2018;119(9):1086–93.CrossRefGoogle Scholar
  23. 23.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.CrossRefGoogle Scholar
  24. 24.
    •• Cardinale D, Ciceri F, Latini R, Franzosi MG, Sandri MT, Civelli M, et al. Anthracycline-induced cardiotoxicity: a multicenter randomized trial comparing two strategies for guiding prevention with enalapril: the International CardioOncology Society-one trial. Eur J Cancer. 2018;94:126–37. Low cumulative doses of anthracyclines in adult cancer patients, with low cardiovascular risk, resulted in increases in troponin levels in approximately 25% of all patients. No difference in cardiotoxicity between two different prevention strategies comparing upfront enalapril vs troponin-triggered enalapril.CrossRefGoogle Scholar
  25. 25.
    Negishi T, Thavendiranathan p Negishi K, Markwick TH, Investigators SUCCOUR. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOR trial. JACC Cardiovasc Imaging. 2018;11(8):1098–105.CrossRefGoogle Scholar
  26. 26.
    Huang DT, Angus DC, Chang CH, Doi Y, Fine MJ, Kellum JA, et al. Design and rationale of the Procalcitonin Antibiotic Consensus Trial (ProACT), a multicenter randomized trial of procalcitonin antibiotic guidance in lower respiratory tract infection. BMC Emerg Med. 2017;17(1):25.CrossRefGoogle Scholar
  27. 27.
    The University of Edinburgh. The Cardiac CARE Trial – can we prevent heart muscle injury related to chemotherapy? The University of Edinburgh web site. https://www.ed.ac.uk/usher/edinburgh-clinical-trials/our-studies/ukcrc-studies/cardiac-care/cardiac-care-trial. Published January 16, 2019. Accessed March 21, 2019.
  28. 28.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.CrossRefGoogle Scholar
  29. 29.
    Lambertini M, Pondé NF, Solinas C, de Azambuja E. Adjuvant trastuzumab: a 10-year overview of its benefit. Expert Rev Anticancer Ther. 2017;17(1):61–74.CrossRefGoogle Scholar
  30. 30.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.CrossRefGoogle Scholar
  31. 31.
    Onitilo AA, Engel JM, Stankowski RV. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 2014;5(4):154–66.CrossRefGoogle Scholar
  32. 32.
    U.S. Food & Drug Administration. Drug approvals and databases. U.S. Food & Drug Administration web site. https://www.fda.gov/Drugs/InformationOnDrugs/. Updated November 1, 2018. Accessed March 29, 2019.
  33. 33.
    Baselga J, Swain SM. CLEOPATRA: a phase III evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer. 2010;10(6):489–91.CrossRefGoogle Scholar
  34. 34.
    von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377(2):122–31.CrossRefGoogle Scholar
  35. 35.
    de Azambuja E, Holmes AP, Piccart-Gebhart M, Holmes E, Di Cosimo S, Swaby RF, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomized, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15(10):1137–46.CrossRefGoogle Scholar
  36. 36.
    Gianni L, Pienkowski T, Im YH, Tseng LM, Liu MC, Lluch A, et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomized trial. Lancet Oncol. 2016;17(6):791–800.CrossRefGoogle Scholar
  37. 37.
    Krop I, Winer EP. Further progress in HER2-directed therapy. Lancet Oncol. 2012;13(1):2–3.CrossRefGoogle Scholar
  38. 38.
    • Van Ramshorst MS, van der Voort A, van Werkhoven ED, Mandjes IA, Kemper I, Dezentjé VO, et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomized, phase 3 trial. Lancet Oncol. 2018;19(12):1630–40. In HER 2+ early breast cancer, when using dual HER2 blockade, anthracyclines can be avoided from the chemotherapy regimen, without compromising pathological complete response rates.CrossRefGoogle Scholar
  39. 39.
    Burstein HJ, Sun Y, Dirix LY, Jiang Z, Paridaens R, Tan AR, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol. 2010;28(8):1301–7.CrossRefGoogle Scholar
  40. 40.
    Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs. 2014;32(5):825–37.CrossRefGoogle Scholar
  41. 41.
    Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.PubMedGoogle Scholar
  42. 42.
    Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, et al. MONARCH 1, A phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer. Clin Cancer Res. 2017;23(17):5218–24.CrossRefGoogle Scholar
  43. 43.
    Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.CrossRefGoogle Scholar
  44. 44.
    Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35(32):3638–46.CrossRefGoogle Scholar
  45. 45.
    Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.CrossRefGoogle Scholar
  46. 46.
    Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomized controlled trial. Lancet Oncol. 2016;17(4):425–39.CrossRefGoogle Scholar
  47. 47.
    Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol. 2018;29(7):1541–7.PubMedGoogle Scholar
  48. 48.
    Tripathy D, Im SA, Colleoni M, Franke F, Bardia A, Harbeck N, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomized phase 3 trial. Lancet Oncol. 2018;19(7):904–15.CrossRefGoogle Scholar
  49. 49.
    Novartis Pharmaceuticals Corporation. LABEL: KISQALI- ribociclib tablet, film coated. Drug label information. DailyMed web site. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=aaeaef94-f3f5-4367-8ea2-b181d7be2da8. Updated November 3, 2018. Accessed March 28, 2019.
  50. 50.
    Durairaj C, Ruiz-Garcia A, Gauthier ER, Huang X, Lu DR, Hoffman JT, et al. Palbociclib has no clinically relevant effect on the QTc interval in patients with advanced breast cancer. Anti-Cancer Drugs. 2018;29(3):271–80.PubMedPubMedCentralGoogle Scholar
  51. 51.
    CredibleMeds®. CredibleMeds web site. www.crediblemeds.org. Accessed March 29, 2019.
  52. 52.
    Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumors. Nature. 2000;406(6797):747–52.CrossRefGoogle Scholar
  53. 53.
    Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.CrossRefGoogle Scholar
  54. 54.
    Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.CrossRefGoogle Scholar
  55. 55.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triplenegative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.CrossRefGoogle Scholar
  56. 56.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.CrossRefGoogle Scholar
  57. 57.
    Zeichner S, Terawaki H, Gogineni K. A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer (Auckl). 2016;10:25–36.Google Scholar
  58. 58.
    Griguolo G, Dieci MV, Guarneri V, Conte P. Olaparib for the treatment of breast cancer. Expert Rev Anticancer Ther. 2018;18(6):519–30.CrossRefGoogle Scholar
  59. 59.
    Robson M, Im SA, Senkus E, Xu B, Domcheck SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.CrossRefGoogle Scholar
  60. 60.
    Olaparib In Metastatic Breast Cancer. ClinicalTrials.gov web site. https://clinicaltrials.gov/ct2/show/NCT03344965?term=olaparib&draw=2&rank=11. Updated February 18, 2019. Accessed March 28, 2019.
  61. 61.
    Olaparib and Durvalumab to Treat Patients With Metastatic Triple Negative Breast Cancer. ClinicalTrials.gov web site. https://clinicaltrials.gov/ct2/show/NCT03801369. Updated January 11, 2019. Accessed March 28, 2019.
  62. 62.
    Olaparib + Sapacitabine in BRCA Mutant Breast Cancer. ClinicalTrials.gov web site. https://clinicaltrials.gov/ct2/show/NCT03641755?term=olaparib&draw=4&rank=31. Updated October 2, 2018. Accessed March 28, 2019.
  63. 63.
    Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309(9):H1453–67.CrossRefGoogle Scholar
  64. 64.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefGoogle Scholar
  65. 65.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.CrossRefGoogle Scholar
  66. 66.
    •• Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21. Atezolizumab plus nab-paclitaxel prolonged progression-free survival among patients with PD-L1–positive tumors, proving efficacy of immunotherapy in this subset of patients. PD-L1 expression status on tumor-infiltrating immune cells should be taken into consideration when considering treatment choices for metastatic triple-negative breast cancer.CrossRefGoogle Scholar
  67. 67.
    Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.CrossRefGoogle Scholar
  68. 68.
    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.CrossRefGoogle Scholar
  69. 69.
    Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.CrossRefGoogle Scholar
  70. 70.
    Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, et al. Clinical Features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136(21):2085–7.CrossRefGoogle Scholar
  71. 71.
    Ganatra S, Neilan TG. Immune checkpoint inhibitor-associated myocarditis. Oncologist. 2018;23(8):518–23.CrossRefGoogle Scholar
  72. 72.
    Wang DY, Okoye GD, Neilan TG, Johnson DB, Moslehi JJ. Cardiovascular toxicities associated with cancer immunotherapies. Curr Cardiol Rep. 2017;19(3):21.CrossRefGoogle Scholar
  73. 73.
    CARDIOONC.ORG. The link between cancer and cardiovascular disease. CARDIOONC.ORG web site. http://cardioonc.org/. Accessed March 28, 2019.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Susan Dent
    • 1
    Email author
  • Chiara Melloni
    • 2
  • Josee Ivars
    • 3
  • Sarah Sammons
    • 4
  • Gretchen Kimmick
    • 5
  1. 1.Duke Cancer InstituteDuke UniversityDurhamUSA
  2. 2.Duke Clinical Research InstituteDuke University School of MedicineDurhamUSA
  3. 3.Faculty of Health SciencesMcMaster UniversityHamiltonCanada
  4. 4.Duke Cancer InstituteDuke UniversityDurhamUSA
  5. 5.Duke Cancer InstituteDuke UniversityDurhamUSA

Personalised recommendations