Advertisement

Treatment of Heart Failure With Preserved Ejection Fraction (HFpEF): the Phenotype-Guided Approach

  • Daniel N. Silverman
  • Sanjiv J. ShahEmail author
Heart Failure (W Tang, Section Editor)
  • 97 Downloads
Part of the following topical collections:
  1. Topical Collection on Heart Failure

Abstract

The syndrome of heart failure with preserved ejection (HFpEF) continues to rise in prevalence without persuasive evidence of current pharmacologic interventions that can reduce mortality. Clinical trials thus far have generally enrolled “all-comers” with the clinical syndrome of heart failure and objective evidence of a preserved ejection fraction. However, HFpEF is increasingly understood to be a heterogeneous syndrome likely borne from the interplay of genetic predisposition, lifestyle factors, and high burden of associated comorbidities with each contributing to a variety of incompletely understood pathophysiologic abnormalities. Complicating management further, such abnormalities appear to be present to varying degrees among individual patients. Ongoing studies, along with the use of computational statistics/machine learning, offer the hope of clarifying the pathophysiological substrates giving rise to the syndrome of HFpEF in different patient subsets. With better understanding of the syndrome’s underpinnings, there will be the potential for development of truly targeted therapies. However, for now, there is substantial evidence for the use of currently available pharmacologic device and lifestyle therapy for the optimized management of patients. Such therapy can be tailored to presently identifiable patient clusters—called “phenotypes”—distinguished by both the presence of predominant presenting symptoms and/or predominant comorbidity profiles. Examples of clinical presentation phenotypes include lung congestion, chronotropic incompetence, pulmonary hypertension, or skeletal muscle weakness as predominant features. Additionally, such patients may have underlying metabolic syndrome, systemic (arterial) hypertension, renal dysfunction, atrial fibrillation, and/or coronary artery disease as principal underlying comorbidities. Here, we review a “phenotype-guided” approach to the management of patients with HFpEF, based on a stepwise method of making the HFpEF diagnosis, identifying the prominent sources of organ dysfunction, and treating accordingly.

Keywords

Heart failure with preserved ejection fraction Treatment Phenotype 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Silverman reports no conflicts of interest. Dr. Shah reports receiving research grants from the National Institutes of Health (R01 HL107577, R01 HL127028, and R01 HL140731), Actelion, AstraZeneca, Corvia, and Novartis; and has served as a consultant/advisory board member for Abbott, Actelion, AstraZeneca, Amgen, Bayer, Boehringer-Ingelheim, Cardiora, Coridea, CVRx, Eisai, Ionis, Ironwood, Merck, MyoKardia, Novartis, Pfizer, Sanofi, Tenax, and United Therapeutics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

  1. 1.
    Borlaug BA, Jaber WA, Ommen SR, Lam CS, Redfield MM, Nishimura RA. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart. 2011;97(12):964–9.  https://doi.org/10.1136/hrt.2010.212787.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33(14):1750–7.  https://doi.org/10.1093/eurheartj/ehr254.CrossRefGoogle Scholar
  3. 3.
    Shah AM, Solomon SD. Phenotypic and pathophysiological heterogeneity in heart failure with preserved ejection fraction. Eur Heart J. 2012;33(14):1716–7.  https://doi.org/10.1093/eurheartj/ehs124.CrossRefPubMedGoogle Scholar
  4. 4.
    Sharma K, Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79–96.  https://doi.org/10.1161/circresaha.115.302922.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2014;11(9):507–15.  https://doi.org/10.1038/nrcardio.2014.83.CrossRefPubMedGoogle Scholar
  6. 6.
    Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.  https://doi.org/10.1016/j.jacc.2013.02.092.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.  https://doi.org/10.1161/circulationaha.115.001593.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE, et al. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail. 2015;17(9):925–35.  https://doi.org/10.1002/ejhf.327.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79.  https://doi.org/10.1161/circulationaha.114.010637.CrossRefPubMedGoogle Scholar
  10. 10.
    Senni M, Paulus WJ, Gavazzi A, Fraser AG, Diez J, Solomon SD, et al. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J. 2014;35(40):2797–815.  https://doi.org/10.1093/eurheartj/ehu204.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Anjan VY, Loftus TM, Burke MA, Akhter N, Fonarow GC, Gheorghiade M, et al. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am J Cardiol. 2012;110(6):870–6.  https://doi.org/10.1016/j.amjcard.2012.05.014.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Maisel AS, Shah KS, Barnard D, Jaski B, Frivold G, Marais J, et al. How B-type natriuretic peptide (BNP) and body weight changes vary in heart failure with preserved ejection fraction compared with reduced ejection fraction: secondary results of the HABIT (HF assessment with BNP in the home) trial. J Card Fail. 2016;22(4):283–93.  https://doi.org/10.1016/j.cardfail.2015.09.014.CrossRefPubMedGoogle Scholar
  13. 13.
    van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61(14):1498–506.  https://doi.org/10.1016/j.jacc.2012.12.044.CrossRefPubMedGoogle Scholar
  14. 14.
    Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(5):588–95.  https://doi.org/10.1161/circheartfailure.109.930701.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Oktay AA, Shah SJ. Diagnosis and management of heart failure with preserved ejection fraction: 10 key lessons. Curr Cardiol Rev. 2015;11(1):42–52.CrossRefGoogle Scholar
  16. 16.
    Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):407–18.  https://doi.org/10.1016/j.hfc.2014.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134(1):73–90.  https://doi.org/10.1161/circulationaha.116.021884.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hummel SL, Seymour EM, Brook RD, Sheth SS, Ghosh E, Zhu S, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6(6):1165–71.  https://doi.org/10.1161/circheartfailure.113.000481.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. Jama. 2016;315(1):36–46.  https://doi.org/10.1001/jama.2015.17346.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Antoniades C, Bakogiannis C, Leeson P, Guzik TJ, Zhang MH, Tousoulis D, et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation. 2011;124(3):335–45.  https://doi.org/10.1161/circulationaha.110.985150.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ramasubbu K, Estep J, White DL, Deswal A, Mann DL. Experimental and clinical basis for the use of statins in patients with ischemic and nonischemic cardiomyopathy. J Am Coll Cardiol. 2008;51(4):415–26.  https://doi.org/10.1016/j.jacc.2007.10.009.CrossRefPubMedGoogle Scholar
  22. 22.
    Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934.  https://doi.org/10.1016/j.jacc.2013.11.002.CrossRefPubMedGoogle Scholar
  23. 23.
    Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail. 2016;18(6):588–98.  https://doi.org/10.1002/ejhf.497.CrossRefPubMedGoogle Scholar
  24. 24.
    Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338–45.  https://doi.org/10.1093/eurheartj/ehl250.CrossRefPubMedGoogle Scholar
  25. 25.
    Lund LH, Benson L, Dahlstrom U, Edner M. Association between use of renin-angiotensin system antagonists and mortality in patients with heart failure and preserved ejection fraction. Jama. 2012;308(20):2108–17.  https://doi.org/10.1001/jama.2012.14785.CrossRefPubMedGoogle Scholar
  26. 26.
    Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359(23):2456–67.  https://doi.org/10.1056/NEJMoa0805450.CrossRefPubMedGoogle Scholar
  27. 27.
    Parthasarathy HK, Pieske B, Weisskopf M, Andrews CD, Brunel P, Struthers AD, et al. A randomized, double-blind, placebo-controlled study to determine the effects of valsartan on exercise time in patients with symptomatic heart failure with preserved ejection fraction. Eur J Heart Fail. 2009;11(10):980–9.  https://doi.org/10.1093/eurjhf/hfp120.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved trial. Lancet. 2003;362(9386):777–81.  https://doi.org/10.1016/s0140-6736(03)14285-7.CrossRefPubMedGoogle Scholar
  29. 29.
    Conraads VM, Metra M, Kamp O, De Keulenaer GW, Pieske B, Zamorano J, et al. Effects of the long-term administration of nebivolol on the clinical symptoms, exercise capacity, and left ventricular function of patients with diastolic dysfunction: results of the ELANDD study. Eur J Heart Fail. 2012;14(2):219–25.  https://doi.org/10.1093/eurjhf/hfr161.CrossRefPubMedGoogle Scholar
  30. 30.
    Yamamoto K, Origasa H, Hori M. Effects of carvedilol on heart failure with preserved ejection fraction: the Japanese Diastolic Heart Failure Study (J-DHF). Eur J Heart Fail. 2013;15(1):110–8.  https://doi.org/10.1093/eurjhf/hfs141.CrossRefPubMedGoogle Scholar
  31. 31.
    Ahmed A, Rich MW, Fleg JL, Zile MR, Young JB, Kitzman DW, et al. Effects of digoxin on morbidity and mortality in diastolic heart failure: the ancillary digitalis investigation group trial. Circulation. 2006;114(5):397–403.  https://doi.org/10.1161/circulationaha.106.628347.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lopez B, Querejeta R, Gonzalez A, Beaumont J, Larman M, Diez J. Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension. 2009;53(2):236–42.  https://doi.org/10.1161/hypertensionaha.108.125278.CrossRefPubMedGoogle Scholar
  33. 33.
    Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387(10017):453–61.  https://doi.org/10.1016/s0140-6736(15)00723-0.CrossRefPubMedGoogle Scholar
  34. 34.
    Adamson PB, Abraham WT, Bourge RC, Costanzo MR, Hasan A, Yadav C, et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail. 2014;7(6):935–44.  https://doi.org/10.1161/circheartfailure.113.001229.CrossRefPubMedGoogle Scholar
  35. 35.
    Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008;118(22):2259–67.  https://doi.org/10.1161/circulationaha.107.762229.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98.  https://doi.org/10.1056/NEJMoa0801369.CrossRefPubMedGoogle Scholar
  37. 37.
    Elliott WJ. Effects of potassium-sparing versus thiazide diuretics on glucose tolerance: new data on an old topic. Hypertension. 2012;59(5):911–2.  https://doi.org/10.1161/hypertensionaha.112.192542.CrossRefPubMedGoogle Scholar
  38. 38.
    Stears AJ, Woods SH, Watts MM, Burton TJ, Graggaber J, Mir FA, et al. A double-blind, placebo-controlled, crossover trial comparing the effects of amiloride and hydrochlorothiazide on glucose tolerance in patients with essential hypertension. Hypertension. 2012;59(5):934–42.  https://doi.org/10.1161/hypertensionaha.111.189381.CrossRefPubMedGoogle Scholar
  39. 39.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.  https://doi.org/10.1056/NEJMoa1313731.CrossRefPubMedGoogle Scholar
  40. 40.
    Pfeffer MA, Claggett B, Assmann SF, Boineau R, Anand IS, Clausell N, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015;131(1):34–42.  https://doi.org/10.1161/circulationaha.114.013255.CrossRefPubMedGoogle Scholar
  41. 41.
    Mitter SS, Shah SJ. Spironolactone for management of heart failure with preserved ejection fraction: Whither to after TOPCAT? Curr Atheroscler Rep. 2015;17(11):64.  https://doi.org/10.1007/s11883-015-0541-6.CrossRefPubMedGoogle Scholar
  42. 42.
    Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24.  https://doi.org/10.1056/NEJMoa1510774.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124(2):164–74.  https://doi.org/10.1161/circulationaha.110.983866.CrossRefPubMedGoogle Scholar
  44. 44.
    Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. Jama. 2013;309(12):1268–77.  https://doi.org/10.1001/jama.2013.2024.CrossRefPubMedGoogle Scholar
  45. 45.
    Borlaug BA, Lewis GD, McNulty SE, Semigran MJ, LeWinter M, Chen H, et al. Effects of sildenafil on ventricular and vascular function in heart failure with preserved ejection fraction. Circ Heart Fail. 2015;8(3):533–41.  https://doi.org/10.1161/circheartfailure.114.001915.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Alehagen U, Benson L, Edner M, Dahlstrom U, Lund LH. Association between use of statins and mortality in patients with heart failure and ejection fraction of >/=50. Circ Heart Fail. 2015;8(5):862–70.  https://doi.org/10.1161/circheartfailure.115.002143.CrossRefPubMedGoogle Scholar
  47. 47.
    Nochioka K, Sakata Y, Miyata S, Miura M, Takada T, Tadaki S, et al. Prognostic impact of statin use in patients with heart failure and preserved ejection fraction. Circ J. 2015;79(3):574–82.  https://doi.org/10.1253/circj.CJ-14-0865.CrossRefPubMedGoogle Scholar
  48. 48.
    Martinson M, Bharmi R, Dalal N, Abraham WT, Adamson PB. Pulmonary artery pressure-guided heart failure management: US cost-effectiveness analyses using the results of the CHAMPION clinical trial. Eur J Heart Fail. 2016;19:652–60.  https://doi.org/10.1002/ejhf.642.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    LeWinter MM, Granzier HL. Cardiac titin and heart disease. J Cardiovasc Pharmacol. 2014;63(3):207–12.  https://doi.org/10.1097/fjc.0000000000000007.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95.  https://doi.org/10.1016/s0140-6736(12)61227-6.CrossRefPubMedGoogle Scholar
  51. 51.
    van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126(7):830–9.  https://doi.org/10.1161/circulationaha.111.076075.CrossRefPubMedGoogle Scholar
  52. 52.
    Pieske B, Butler J, Filippatos G, Lam C, Maggioni AP, Ponikowski P, et al. Rationale and design of the SOluble guanylate cyclase stimulatoR in heArT failurE studies (SOCRATES). Eur J Heart Fail. 2014;16(9):1026–38.  https://doi.org/10.1002/ejhf.135.CrossRefPubMedGoogle Scholar
  53. 53.
    Hasenfuss G, Hayward C, Burkhoff D, Silvestry FE, McKenzie S, Gustafsson F, et al. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet. 2016;387(10025):1298–304.  https://doi.org/10.1016/s0140-6736(16)00704-2.CrossRefPubMedGoogle Scholar
  54. 54.
    Feldman T, Komtebedde J, Burkhoff D, Massaro J, Maurer MS, Leon MB, et al. Transcatheter interatrial shunt device for the treatment of heart failure: rationale and design of the randomized trial to REDUCE Elevated Left Atrial Pressure in Heart Failure (REDUCE LAP-HF I). Circ Heart Fail. 2016;9(7).  https://doi.org/10.1161/circheartfailure.116.003025.
  55. 55.
    Feldman T, Mauri L, Kahwash R, Litwin S, Ricciardi MJ, van der Harst P, et al. Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]): a phase 2, randomized, sham-controlled trial. Circulation. 2018;137(4):364–75.  https://doi.org/10.1161/circulationaha.117.032094.CrossRefPubMedGoogle Scholar
  56. 56.
    Shah, S. J., Feldman, T., Ricciardi, M. J., Kahwash, R., Lilly, S., Litwin, S., … Mauri, L. (2018). One-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (REDUCE LAP-HF I) trial: a. doi: https://doi.org/10.1001/jamacardio.2018.2936.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations