Vascular Genetics: Presentations, Testing, and Prognostics

  • Aaron W. AdayEmail author
  • Sarah E. Kreykes
  • Christina L. Fanola
Vascular Disease (M Weinberg, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Vascular Disease


Purpose of review

Numerous studies have begun to unravel the genetic basis of not only aortic disease but also other forms of commonly encountered vascular diseases. The goal of this review is to provide clinicians a reference to help identify and diagnose different types of vascular disease with a genetic underpinning.

Recent findings

Ongoing studies have identified numerous genes involved in the TGF-β signaling pathway that are also associated with thoracic aortic aneurysm and dissection, and it is possible to test for pathogenic variants in these genes in the clinical setting using commercially available genetic testing panels. Additional studies have begun to identify genetic variants associated with an increased risk of bicuspid aortic valve, abdominal aortic aneurysm, and fibromuscular dysplasia.


With increased availability of low-cost genetic testing, clinicians are now able to not only definitively diagnose some vascular syndromes but also provide information on the risk of disease in other family members, as well as provide guidance in terms of family planning. As the cost of genetic testing continues to drop with the benefit of increasing insurance coverage, genetic data will increasingly become part of clinical care for many patients with vascular disease.


Vascular genetics Aneurysm Dissection Aortic disease 



This work was supported by NIH T32 HL007575 and K12 HL133117 (AA).

Author Contributions

AA was responsible for conceptualization and drafting of the manuscript. SK was responsible for editing of the manuscript. CF was responsible for conceptualization and editing of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lindsay ME, Dietz HC. The genetic basis of aortic aneurysm. Cold Spring Harb Perspect Med. 2014;4(9):a015909. Scholar
  2. 2.
    Ma WG, Chou AS, Mok SCM, Ziganshin BA, Charilaou P, Zafar MA, et al. Positive family history of aortic dissection dramatically increases dissection risk in family members. Int J Cardiol. 2017;240:132–7. Scholar
  3. 3.
    Pyeritz RE. The family history: the first genetic test, and still useful after all those years? Genet Med. 2011;14:3. Scholar
  4. 4.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369. Scholar
  5. 5.
    Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet. 2013;14(4):295–300. Scholar
  6. 6.
    Arndt A-K, MacRae CA. Genetic testing in cardiovascular diseases. Curr Opin Cardiol. 2014;29(3):235–40. Scholar
  7. 7.
    Campens L, Callewaert B, Muiño Mosquera L, Renard M, Symoens S, De Paepe A, et al. Gene panel sequencing in heritable thoracic aortic disorders and related entities—results of comprehensive testing in a cohort of 264 patients. Orphanet J Rare Dis. 2015;10:9. Scholar
  8. 8.
    Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg. 2015;100(5):1604–11. Scholar
  9. 9.
    Proost D, Vandeweyer G, Meester JA, Salemink S, Kempers M, Ingram C, et al. Performant mutation identification using targeted next-generation sequencing of 14 thoracic aortic aneurysm genes. Hum Mutat. 2015;36(8):808–14. Scholar
  10. 10.
    Groth KA, Hove H, Kyhl K, Folkestad L, Gaustadnes M, Vejlstrup N, et al. Prevalence, incidence, and age at diagnosis in Marfan syndrome. Orphanet J Rare Dis. 2015;10:153. Scholar
  11. 11.
    Devereux RB, de Simone G, Arnett DK, Best LG, Boerwinkle E, Howard BV, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol. 2012;110(8):1189–94. Scholar
  12. 12.
    • den Hartog AW, Franken R, Zwinderman AH, Timmermans J, Scholte AJ, van den Berg MP, et al. The risk for type B aortic dissection in Marfan syndrome. J Am Coll Cardiol. 2015;65(3):246–54. Provides a longitudinal assessment of patients with Marfan syndrome and documents a high rate of type B dissection among these individuals, particularly in those with a previous history of prophylactic aortic surgery.CrossRefGoogle Scholar
  13. 13.
    Lundby R, Rand-Hendriksen S, Hald JK, Pripp AH, Smith HJ. The pulmonary artery in patients with Marfan syndrome: a cross-sectional study. Genet Med. 2012;14(11):922–7. Scholar
  14. 14.
    Pati PK, George PV, Jose JV. Giant pulmonary artery aneurysm with dissection in a case of Marfan syndrome. J Am Coll Cardiol. 2013;61:685.CrossRefGoogle Scholar
  15. 15.
    Pepe G, Giusti B, Sticchi E, Abbate R, Gensini GF, Nistri S. Marfan syndrome: current perspectives. Appl Clin Genet. 2016;9:55–65. Scholar
  16. 16.
    •• Dietz H. Marfan Syndrome. In: GeneReviews [Internet]. 2017th ed. Seattle: University of Washington, Seattle; 2001. This review provides a detailed description of the clinical manifestations of Marfan syndrome as well as its diagnosis and management.Google Scholar
  17. 17.
    Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9. Scholar
  18. 18.
    Pyeritz RE. Etiology and pathogenesis of the Marfan syndrome: current understanding. Ann Cardiothorac Surg. 2017;6(6):595–8. Scholar
  19. 19.
    Grewal N, Gittenberger-de Groot AC. Pathogenesis of aortic wall complications in Marfan syndrome. Cardiovasc Pathol. 2018;33:62–9. Scholar
  20. 20.
    Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, Van Erp C, et al. Noncanonical TGF signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science (New York, NY). 2011;332(6027):358–61. Scholar
  21. 21.
    Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21. Scholar
  22. 22.
    Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85. Scholar
  23. 23.
    Silverman DI, Burton KJ, Gray J, Bosner MS, Kouchoukos NT, Roman MJ, et al. Life expectancy in the Marfan syndrome. Am J Cardiol. 1995;75(2):157–60.CrossRefGoogle Scholar
  24. 24.
    Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, et al. Effect of mutation type and location on clinical outcome in 1013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am J Hum Genet. 2007;81(3):454–66.CrossRefGoogle Scholar
  25. 25.
    Franken R, den Hartog AW, Radonic T, Micha D, Maugeri A, van Dijk FS, et al. Beneficial outcome of losartan therapy depends on type of FBN1 mutation in Marfan syndrome. Circ Cardiovasc Genet. 2015;8(2):383–8. Scholar
  26. 26.
    MacCarrick G, Black JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, et al. Loeys–Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16(8):576–87. Scholar
  27. 27.
    Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-β receptor. N Engl J Med. 2006;355(8):788–98. Scholar
  28. 28.
    Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, et al. Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015;65(13):1324–36. Scholar
  29. 29.
    van de Laar IM, van der Linde D, Oei EH, Bos PK, Bessems JH, Bierma-Zeinstra SM, et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet. 2012;49(1):47–57.,382.CrossRefPubMedGoogle Scholar
  30. 30.
    van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43(2):121–6. Scholar
  31. 31.
    Malhotra A, Westesson PL. Loeys-Dietz syndrome. Pediatr Radiol. 2009;39(9):1015. Scholar
  32. 32.
    Williams JA, Loeys BL, Nwakanma LU, Dietz HC, Spevak PJ, Patel ND, et al. Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease. Ann Thorac Surg. 2007;83(2):S757–63; discussion S85–90. Scholar
  33. 33.
    Milewicz DM, Regalado E. Heritable thoracic aortic disease overview. In: GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 2003.Google Scholar
  34. 34.
    Khau Van Kien P, Mathieu F, Zhu L, Lalande A, Betard C, Lathrop M, et al. Mapping of familial thoracic aortic aneurysm/dissection with patent ductus arteriosus to 16p12.2-p13.13. Circulation. 2005;112(2):200–6. Scholar
  35. 35.
    Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet. 2007;16(20):2453–62. Scholar
  36. 36.
    Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39(12):1488–93. Scholar
  37. 37.
    Milewicz DM, Carlson AA, Regalado ES. Genes predisposing to thoracic aortic aneurysms and dissections: associated phenotypes, gene-specific management, and genetic testing. Cardiol Clin. 2010;28(2):191–7. Scholar
  38. 38.
    Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–27. Scholar
  39. 39.
    Pannu H, Fadulu VT, Chang J, Lafont A, Hasham SN, Sparks E, et al. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation. 2005;112(4):513–20. Scholar
  40. 40.
    Tran-Fadulu V, Pannu H, Kim DH, Vick GW 3rd, Lonsford CM, Lafont AL, et al. Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet. 2009;46(9):607–13. Scholar
  41. 41.
    Wenstrup RJ, Meyer RA, Lyle JS, Hoechstetter L, Rose PS, Levy HP, et al. Prevalence of aortic root dilation in the Ehlers-Danlos syndrome. Genet Med. 2002;4(3):112–7. Scholar
  42. 42.
    Atzinger CL, Meyer RA, Khoury PR, Gao Z, Tinkle BT. Cross-sectional and longitudinal assessment of aortic root dilation and valvular anomalies in hypermobile and classic Ehlers-Danlos syndrome. J Pediatr. 2011;158(5):826–30.e1. Scholar
  43. 43.
    Malfait F, Coucke P, Symoens S, Loeys B, Nuytinck L, De Paepe A. The molecular basis of classic Ehlers-Danlos syndrome: a comprehensive study of biochemical and molecular findings in 48 unrelated patients. Hum Mutat. 2005;25(1):28–37. Scholar
  44. 44.
    Tinkle B, Castori M, Berglund B, Cohen H, Grahame R, Kazkaz H, et al. Hypermobile Ehlers-Danlos syndrome (a.k.a. Ehlers-Danlos syndrome type III and Ehlers-Danlos syndrome hypermobility type): clinical description and natural history. Am J Med Genet C: Semin Med Genet. 2017;175(1):48–69. Scholar
  45. 45.
    Oderich GS, Panneton JM, Bower TC, Lindor NM, Cherry KJ, Noel AA, et al. The spectrum, management and clinical outcome of Ehlers-Danlos syndrome type IV: a 30-year experience. J Vasc Surg. 2005;42(1):98–106. Scholar
  46. 46.
    North KN, Whiteman DA, Pepin MG, Byers PH. Cerebrovascular complications in Ehlers-Danlos syndrome type IV. Ann Neurol. 1995;38(6):960–4. Scholar
  47. 47.
    Parfitt J, Chalmers RT, Wolfe JH. Visceral aneurysms in Ehlers-Danlos syndrome: case report and review of the literature. J Vasc Surg. 2000;31(6):1248–51. Scholar
  48. 48.
    Frank M, Albuisson J, Ranque B, Golmard L, Mazzella JM, Bal-Theoleyre L, et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers–Danlos syndrome. Eur J Hum Genet. 2015;23(12):1657–64. Scholar
  49. 49.
    Shalhub S, Black JH, Cecchi AC, Xu Z, Griswold BF, Safi HJ, et al. Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arterial involvement and outcomes. J Vasc Surg. 2014;60(1):160–9. Scholar
  50. 50.
    • Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med. 2014;16(12):881–8. This study showed that among patients with vascular Ehlers-Danlos syndrome, COL3A1 null mutations are associated with longer survival compared to other mutations.
  51. 51.
    Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342(10):673–80. Scholar
  52. 52.
    Callewaert BL, Loeys BL, Ficcadenti A, Vermeer S, Landgren M, Kroes HY, et al. Comprehensive clinical and molecular assessment of 32 probands with congenital contractural arachnodactyly: report of 14 novel mutations and review of the literature. Hum Mutat. 2009;30(3):334–41. Scholar
  53. 53.
    Gupta PA, Putnam EA, Carmical SG, Kaitila I, Steinmann B, Child A, et al. Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype. Hum Mutat. 2002;19(1):39–48. Scholar
  54. 54.
    Nishimura A, Sakai H, Ikegawa S, Kitoh H, Haga N, Ishikiriyama S, et al. FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly. Am J Med Genet A. 2007;143a(7):694–8. Scholar
  55. 55.
    Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D, et al. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012;44(11):1249–54. Scholar
  56. 56.
    Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K, Albrecht B, et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008;29(1):150–8. Scholar
  57. 57.
    Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38(4):452–7. Scholar
  58. 58.
    Ritelli M, Chiarelli N, Dordoni C, Reffo E, Venturini M, Quinzani S, et al. Arterial tortuosity syndrome: homozygosity for two novel and one recurrent SLC2A10 missense mutations in three families with severe cardiopulmonary complications in infancy and a literature review. BMC Med Genet. 2014;15:122. Scholar
  59. 59.
    Elsheikh M, Dunger DB, Conway GS, Wass JA. Turner’s syndrome in adulthood. Endocr Rev. 2002;23(1):120–40. Scholar
  60. 60.
    Sybert VP, McCauley E. Turner’s syndrome. N Engl J Med. 2004;351(12):1227–38. Scholar
  61. 61.
    Gøtzsche CO, Krag-Olsen B, Nielsen J, Sørensen KE, Kristensen BO. Prevalence of cardiovascular malformations and association with karyotypes in Turner’s syndrome. Arch Dis Child. 1994;71:433–6.CrossRefGoogle Scholar
  62. 62.
    Bondy CA. Aortic dissection in Turner syndrome. Curr Opin Cardiol. 2008;23(6):519–26.CrossRefGoogle Scholar
  63. 63.
    Matura LA, Ho VB, Rosing DR, Bondy CA. Aortic dilatation and dissection in Turner syndrome. Circulation. 2007;116(15):1663–70. Scholar
  64. 64.
    Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800. Scholar
  65. 65.
    Braverman AC, Guven H, Beardslee MA, Makan M, Kates AM, Moon MR. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30(9):470–522. Scholar
  66. 66.
    Tadros TM, Klein MD, Shapira OM. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation. 2009;119(6):880–90. Scholar
  67. 67.
    Freeze SL, Landis BJ, Ware SM, Helm BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns. 2016;25(6):1171–8. Scholar
  68. 68.
    Calloway TJ, Martin LJ, Zhang X, Tandon A, Benson DW, Hinton RB. Risk factors for aortic valve disease in bicuspid aortic valve: a family-based study. Am J Med Genet A. 2011;155a(5):1015–20. Scholar
  69. 69.
    Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4. Scholar
  70. 70.
    Yang B, Zhou W, Jiao J, Nielsen JB, Mathis MR, Heydarpour M, et al. Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve. Nat Commun. 2017;8:15481. Scholar
  71. 71.
    Pepe G, Nistri S, Giusti B, Sticchi E, Attanasio M, Porciani C, et al. Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome. BMC Med Genet. 2014;15:23. Scholar
  72. 72.
    Darling RC, Messina CR, Brewster DC, Ottinger LW. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation. 1977;56(3 Suppl):Ii161–4.PubMedGoogle Scholar
  73. 73.
    Lederle FA, Johnson GR, Wilson SE, Chute EP, Hye RJ, Makaroun MS, et al. The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch Intern Med. 2000;160(10):1425–30.CrossRefGoogle Scholar
  74. 74.
    Kent KC. Abdominal aortic aneurysms. N Engl J Med. 2014;371(22):2101–8. Scholar
  75. 75.
    Baird PA, Sadovnick AD, Yee IM, Cole CW, Cole L. Sibling risks of abdominal aortic aneurysm. Lancet. 1995;346(8975):601–4.CrossRefGoogle Scholar
  76. 76.
    Blanchard JF, Armenian HK, Friesen PP. Risk factors for abdominal aortic aneurysm: results of a case-control study. Am J Epidemiol. 2000;151(6):575–83.CrossRefGoogle Scholar
  77. 77.
    Verloes A, Sakalihasan N, Koulischer L, Limet R. Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J Vasc Surg. 1995;21(4):646–55.CrossRefGoogle Scholar
  78. 78.
    Bown MJ, Jones GT, Harrison SC, Wright BJ, Bumpstead S, Baas AF, et al. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. Am J Hum Genet. 2011;89(5):619–27. Scholar
  79. 79.
    Jones GT, Bown MJ, Gretarsdottir S, Romaine SP, Helgadottir A, Yu G, et al. A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol Genet. 2013;22(14):2941–7. Scholar
  80. 80.
    Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science. 2003;300(5617):329–32. Scholar
  81. 81.
    Harrison SC, Smith AJ, Jones GT, Swerdlow DI, Rampuri R, Bown MJ, et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur Heart J. 2013;34(48):3707–16. Scholar
  82. 82.
    Olin JW, Gornik HL, Bacharach JM, Biller J, Fine LJ, Gray BH, et al. Fibromuscular dysplasia: state of the science and critical unanswered questions. Circulation. 2014;129:1048–78.CrossRefGoogle Scholar
  83. 83.
    Olin JW, Froehlich J, Gu X, Bacharach JM, Eagle K, Gray BH, et al. The United States Registry for Fibromuscular Dysplasia: results in the first 447 patients. Circulation. 2012;125:3182–90.CrossRefGoogle Scholar
  84. 84.
    Kiando SR, Tucker NR, Castro-Vega L-J, Katz A, D’Escamard V, Tréard C, et al. PHACTR1 is a genetic susceptibility locus for fibromuscular dysplasia supporting its complex genetic pattern of inheritance. PLoS Genet. 2016;12(10):e1006367. Scholar
  85. 85.
    DeCarlo C, Ganguli S, Borges JC, Schainfeld RM, Mintz AJ, Mintz J, et al. Presentation, treatment, and outcomes in patients with spontaneous isolated celiac and superior mesenteric artery dissection. Vasc Med. 2017;22(6):505–11. Scholar
  86. 86.
    Tanaka Y, Yoshimuta T, Kimura K, Iino K, Tamura Y, Sakata K, et al. Clinical characteristics of spontaneous isolated visceral artery dissection. J Vasc Surg. 2018;67(4):1127–33. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aaron W. Aday
    • 1
    Email author
  • Sarah E. Kreykes
    • 2
  • Christina L. Fanola
    • 2
  1. 1.Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleUSA
  2. 2.Adult Congenital and Cardiovascular Genetics Center, Division of Cardiovascular MedicineUniversity of Minnesota Medical CenterMinneapolisUSA

Personalised recommendations