Prevention of Contrast and Radiation Injury During Coronary Angiography and Percutaneous Coronary Intervention

Coronary Artery Disease (D Feldman and V Voudris, Section Editors)
  • 83 Downloads
Part of the following topical collections:
  1. Topical Collection on Coronary Artery Disease

Abstract

Purpose of review

In this review, we provide a summary of the recently published literature on various methods of preventing contrast-induced acute kidney injury (CI-AKI) and radiation-related injuries associated with cardiac catheterization and percutaneous coronary intervention (PCI).

Recent findings

The overall reported incidence of CI-AKI is declining, primarily due to adaptation of a standardized definition for CI-AKI as well as implementation of pre-procedural protocols to prevent or decrease the risk of CI-AKI. The implementation of increasing awareness and establishing radiation protection culture has been shown to be effective measures in reducing radiation exposure.

Summary

Coronary angiography and PCI are valuable diagnostic and therapeutic tools in cardiovascular medicine. Accurate imaging of the coronary arteries in cardiac catheterization is dependent on the use of intravascular injection of iodinated contrast media and fluoroscopic imaging. Patients undergoing diagnostic and interventional cardiac catheterization may be exposed to a substantial amount of contrast media and ionizing radiation. Administration of contrast media is correlated with increased risk of CI-AKI, and exposure to radiation is known to be associated with a spectrum of acute and chronic tissue injuries.

Keywords

Cardiac catheterization Contrast-induced nephropathy Contrast-induced acute kidney injury Radiation injury 

Notes

Compliance with Ethical Standards

Conflict of Interest

Arash Ehteshami Afshar and Puja B. Parikh each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kellum JA, Lameire N, Group KAGW. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17(1):204.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mamoulakis C, Tsarouhas K, Fragkiadoulaki I, Heretis I, Wilks MF, Spandidos DA, et al. Contrast-induced nephropathy: basic concepts, pathophysiological implications and prevention strategies. Pharmacol Ther. 2017;180:99–112.CrossRefPubMedGoogle Scholar
  3. 3.
    Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv. 2014;7(1):1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28(2):653–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191(2):376–82.CrossRefPubMedGoogle Scholar
  6. 6.
    McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68(13):1465–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int. 2005;68(1):14–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Guitterez NV, Diaz A, Timmis GC, O'Neill WW, Stevens MA, Sandberg KR, et al. Determinants of serum creatinine trajectory in acute contrast nephropathy. J Interv Cardiol. 2002;15(5):349–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Sharma PV, Babu SC, Shah PM, Nassoura ZE. Changing patterns of atheroembolism. Cardiovasc Surg. 1996;4(5):573–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Azzalini L, Garcia-Moll X. On contrast-induced acute kidney injury, risk prediction, and the future of predictive model development. Can J Cardiol. 2017;33(6):711–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Weisbord SD, Chen H, Stone RA, Kip KE, Fine MJ, Saul MI, et al. Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol. 2006;17(10):2871–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Giacoppo D, Madhavan MV, Baber U, Warren J, Bansilal S, Witzenbichler B, et al. Impact of contrast-induced acute kidney injury after percutaneous coronary intervention on short- and long-term outcomes: pooled analysis from the HORIZONS-AMI and ACUITY trials. Circ Cardiovasc Interv. 2015;8(8):e002475.CrossRefPubMedGoogle Scholar
  13. 13.
    Rudnick M, Feldman H. Contrast-induced nephropathy: what are the true clinical consequences? Clin J Am Soc Nephrol. 2008;3(1):263–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Abe M, Morimoto T, Nakagawa Y, Furukawa Y, Ono K, Kato T, et al. Impact of transient or persistent contrast-induced nephropathy on long-term mortality after elective percutaneous coronary intervention. Am J Cardiol. 2017;120:2146–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Silver SA, Shah PM, Chertow GM, Harel S, Wald R, Harel Z. Risk prediction models for contrast induced nephropathy: systematic review. BMJ. 2015;351:h4395.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.PubMedGoogle Scholar
  17. 17.
    Van Praet JT, De Vriese AS. Prevention of contrast-induced nephropathy: a critical review. Curr Opin Nephrol Hypertens. 2007;16(4):336–47.PubMedGoogle Scholar
  18. 18.
    Oktay V, Calpar Cirali I, Sinan UY, Yildiz A, Ersanli MK. Impact of continuation of metformin prior to elective coronary angiography on acute contrast nephropathy in patients with normal or mildly impaired renal functions. Anatol J Cardiol. 2017.Google Scholar
  19. 19.
    Davidson C, Stacul F, McCullough PA, Tumlin J, Adam A, Lameire N, et al. Contrast medium use. Am J Cardiol. 2006;98(6A):42K–58K.CrossRefPubMedGoogle Scholar
  20. 20.
    Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990;89(5):615–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Azzalini L, Candilio L, McCullough PA, Colombo A. Current risk of contrast-induced acute kidney injury after coronary angiography and intervention: a reappraisal of the literature. Can J Cardiol. 2017;33(10):1225–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Lautin EM, Freeman NJ, Schoenfeld AH, Bakal CW, Haramati N, Friedman AC, et al. Radiocontrast-associated renal dysfunction: a comparison of lower-osmolality and conventional high-osmolality contrast media. AJR Am J Roentgenol. 1991;157(1):59–65.CrossRefPubMedGoogle Scholar
  23. 23.
    Eng J, Wilson RF, Subramaniam RM, Zhang A, Suarez-Cuervo C, Turban S, et al. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):417–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Vuurmans T, Byrne J, Fretz E, Janssen C, Hilton JD, Klinke WP, et al. Chronic kidney injury in patients after cardiac catheterisation or percutaneous coronary intervention: a comparison of radial and femoral approaches (from the British Columbia cardiac and renal registries). Heart. 2010;96(19):1538–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Valgimigli M, Gagnor A, Calabro P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Feldkamp T, Luedemann M, Spehlmann ME, Freitag-Wolf S, Gaensbacher J, Schulte K, et al. Radial access protects from contrast media induced nephropathy after cardiac catheterization procedures. Clin Res Cardiol. 2017.Google Scholar
  27. 27.
    Ando G, Cortese B, Russo F, Rothenbuhler M, Frigoli E, Gargiulo G, et al. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKI-MATRIX. J Am Coll Cardiol. 2017.Google Scholar
  28. 28.
    Jurado-Roman A, Hernandez-Hernandez F, Garcia-Tejada J, Granda-Nistal C, Molina J, Velazquez M, et al. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol. 2015;115(9):1174–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Luo Y, Wang X, Ye Z, Lai Y, Yao Y, Li J, et al. Remedial hydration reduces the incidence of contrast-induced nephropathy and short-term adverse events in patients with ST-segment elevation myocardial infarction: a single-center, randomized trial. Intern Med. 2014;53(20):2265–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, Goel P, et al. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract. 2003;93(1):C29–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Kooiman J, Sijpkens YW, van Buren M, Groeneveld JH, Ramai SR, van der Molen AJ, et al. Randomised trial of no hydration vs. sodium bicarbonate hydration in patients with chronic kidney disease undergoing acute computed tomography-pulmonary angiography. J Thromb Haemost. 2014;12(10):1658–66.CrossRefPubMedGoogle Scholar
  32. 32.
    • Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383(9931):1814–23. The POSEIDON randomized clinical trial is an important study that shows that hemodynamically guided strategy of high volume saline infusion for low intravascular volume status is protective against CI-AKI.CrossRefPubMedGoogle Scholar
  33. 33.
    Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Joannidis M, Schmid M, Wiedermann CJ. Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis. Wien Klin Wochenschr. 2008;120(23–24):742–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB. Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(10):1584–92.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zoungas S, Ninomiya T, Huxley R, Cass A, Jardine M, Gallagher M, et al. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med. 2009;151(9):631–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Zapata-Chica CA, Bello Marquez D, Serna-Higuita LM, Nieto-Rios JF, Casas-Arroyave FD, Donado-Gomez JH. Sodium bicarbonate versus isotonic saline solution to prevent contrast-induced nephropathy: a systematic review and meta-analysis. Colomb Med (Cali). 2015;46(3):90–103.Google Scholar
  38. 38.
    Solomon R, Gordon P, Manoukian SV, Abbott JD, Kereiakes DJ, Jeremias A, et al. Randomized trial of bicarbonate or saline study for the prevention of contrast-induced nephropathy in patients with CKD. Clin J Am Soc Nephrol. 2015;10(9):1519–24.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Subramaniam RM, Suarez-Cuervo C, Wilson RF, Turban S, Zhang A, Sherrod C, et al. Effectiveness of prevention strategies for contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):406–16.CrossRefPubMedGoogle Scholar
  40. 40.••
    Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Eng J Med 2017. PRESERVE randomized 2 by 2 factorial trial demonstrated that there was no benefit of intravenous sodium bicarbonate over intravenous sodium chloride or of oral acetylcysteine over placebo for the prevention of death, need for dialysis, or persistent decline in kidney function at 90 days or for the prevention of contrast-associated acute kidney injury.Google Scholar
  41. 41.
    Shalansky SJ, Vu T, Pate GE, Levin A, Humphries KH, Webb JG. N-Acetylcysteine for prevention of radiographic contrast material-induced nephropathy: is the intravenous route best? Pharmacotherapy. 2005;25(8):1095–103.CrossRefPubMedGoogle Scholar
  42. 42.
    Baker CS, Wragg A, Kumar S, De Palma R, Baker LR, Knight CJ. A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study. J Am Coll Cardiol. 2003;41(12):2114–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343(3):180–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Li JX, Jin EZ, Yu LH, Li Y, Liu NN, Dong YM, et al. Oral N-acetylcysteine for prophylaxis of contrast-induced nephropathy in patients following coronary angioplasty: a meta-analysis. Exp Ther Med. 2017;14(2):1568–76.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pannu N, Wiebe N, Tonelli M. Alberta kidney disease N. Prophylaxis strategies for contrast-induced nephropathy. JAMA. 2006;295(23):2765–79.CrossRefPubMedGoogle Scholar
  46. 46.
    Shyu KG, Cheng JJ, Kuan P. Acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure. J Am Coll Cardiol. 2002;40(8):1383–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Briguori C, Manganelli F, Scarpato P, Elia PP, Golia B, Riviezzo G, et al. Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol. 2002;40(2):298–303.CrossRefPubMedGoogle Scholar
  48. 48.
    Investigators ACT. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized acetylcysteine for contrast-induced nephropathy trial (ACT). Circulation. 2011;124(11):1250–9.CrossRefGoogle Scholar
  49. 49.
    Gueler F, Rong S, Park JK, Fiebeler A, Menne J, Elger M, et al. Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol. 2002;13(9):2288–98.CrossRefPubMedGoogle Scholar
  50. 50.
    Liang M, Yang S, Fu N. Efficacy of short-term moderate or high-dose rosuvastatin in preventing contrast-induced nephropathy: a meta-analysis of 15 randomized controlled trials. Medicine (Baltimore). 2017;96(27):e7384.CrossRefGoogle Scholar
  51. 51.
    Wang N, Qian P, Yan TD, Phan K. Periprocedural effects of statins on the incidence of contrast-induced acute kidney injury: a systematic review and trial sequential analysis. Int J Cardiol. 2016;206:143–52.CrossRefPubMedGoogle Scholar
  52. 52.
    Su X, Xie X, Liu L, Lv J, Song F, Perkovic V, et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis. Am J Kidney Dis. 2017;69(1):69–77.CrossRefPubMedGoogle Scholar
  53. 53.
    Mattathil S, Ghumman S, Weinerman J, Prasad A. Use of the RenalGuard system to prevent contrast-induced AKI: a meta-analysis. J Interv Cardiol. 2017;30(5):480–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Onbasili AO, Yeniceriglu Y, Agaoglu P, Karul A, Tekten T, Akar H, et al. Trimetazidine in the prevention of contrast-induced nephropathy after coronary procedures. Heart. 2007;93(6):698–702.CrossRefPubMedGoogle Scholar
  55. 55.
    Ibrahim TA, El-Mawardy RH, El-Serafy AS, El-Fekky EM. Trimetazidine in the prevention of contrast-induced nephropathy in chronic kidney disease. Cardiovasc Revasc Med. 2017;18(5):315–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Kassis HM, Minsinger KD, McCullough PA, Block CA, Sidhu MS, Brown JR. A review of the use of Iloprost, a synthetic prostacyclin, in the prevention of radiocontrast nephropathy in patients undergoing coronary angiography and intervention. Clin Cardiol. 2015;38(8):492–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Spargias K, Adreanides E, Demerouti E, Gkouziouta A, Manginas A, Pavlides G, et al. Iloprost prevents contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2009;120(18):1793–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Albabtain MA, Almasood A, Alshurafah H, Alamri H, Tamim H. Efficacy of ascorbic acid, N-acetylcysteine, or combination of both on top of saline hydration versus saline hydration alone on prevention of contrast-induced nephropathy: a prospective randomized study. J Interv Cardiol. 2013;26(1):90–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Briguori C, Airoldi F, D'Andrea D, Bonizzoni E, Morici N, Focaccio A, et al. Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation. 2007;115(10):1211–7.PubMedGoogle Scholar
  60. 60.
    Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76(6):826–34.CrossRefPubMedGoogle Scholar
  61. 61.
    Andreassi MG, Piccaluga E, Gargani L, Sabatino L, Borghini A, Faita F, et al. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: a genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc Interv. 2015;8(4):616–27.CrossRefPubMedGoogle Scholar
  62. 62.
    Andreassi MG, Cioppa A, Botto N, Joksic G, Manfredi S, Federici C, et al. Somatic DNA damage in interventional cardiologists: a case-control study. FASEB J. 2005;19(8):998–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Pantos I, Patatoukas G, Katritsis DG, Efstathopoulos E. Patient radiation doses in interventional cardiology procedures. Curr Cardiol Rev. 2009;5(1):1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Christopoulos G, Makke L, Christakopoulos G, Kotsia A, Rangan BV, Roesle M, et al. Optimizing radiation safety in the cardiac catheterization laboratory: a practical approach. Catheter Cardiovasc Interv. 2016;87(2):291–301.CrossRefPubMedGoogle Scholar
  65. 65.
    King JN, Champlin AM, Kelsey CA, Tripp DA. Using a sterile disposable protective surgical drape for reduction of radiation exposure to interventionalists. AJR Am J Roentgenol. 2002;178(1):153–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Murphy JC, Darragh K, Walsh SJ, Hanratty CG. Efficacy of the RADPAD protective drape during real world complex percutaneous coronary intervention procedures. Am J Cardiol. 2011;108(10):1408–10.CrossRefPubMedGoogle Scholar
  67. 67.
    Maeder M, Brunner-La Rocca HP, Wolber T, Ammann P, Roelli H, Rohner F, et al. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv. 2006;67(1):18–23.CrossRefPubMedGoogle Scholar
  68. 68.
    Karadag B, Ikitimur B, Durmaz E, Avci BK, Cakmak HA, Cosansu K, et al. Effectiveness of a lead cap in radiation protection of the head in the cardiac catheterisation laboratory. EuroIntervention. 2013;9(6):754–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Fetterly KA, Bell MR. A practical approach to radiation protection for cardiac catheterization laboratory staff. JACC Cardiovasc Interv. 2017.Google Scholar
  70. 70.
    Musallam A, Volis I, Dadaev S, Abergel E, Soni A, Yalonetsky S, et al. A randomized study comparing the use of a pelvic lead shield during trans-radial interventions: threefold decrease in radiation to the operator but double exposure to the patient. Catheter Cardiovasc Interv. 2015;85(7):1164–70.CrossRefPubMedGoogle Scholar
  71. 71.
    Duran A, Hian SK, Miller DL, Le Heron J, Padovani R, Vano E. Recommendations for occupational radiation protection in interventional cardiology. Catheter Cardiovasc Interv. 2013;82(1):29–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Abdelaal E, Plourde G, MacHaalany J, Arsenault J, Rimac G, Dery JP, et al. Effectiveness of low rate fluoroscopy at reducing operator and patient radiation dose during transradial coronary angiography and interventions. JACC Cardiovasc Interv. 2014;7(5):567–74.CrossRefPubMedGoogle Scholar
  73. 73.
    Mangels DR, Giri J, Hirshfeld J, Wilensky RL. Robotic-assisted percutaneous coronary intervention. Catheter Cardiovasc Interv. 2017.Google Scholar
  74. 74.
    McDonald RJ, McDonald JS, Carter RE, Hartman RP, Katzberg RW, Kallmes DF, et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology. 2014;273(3):714–25.CrossRefPubMedGoogle Scholar
  75. 75.
    Szummer K, Lundman P, Jacobson SH, Schon S, Lindback J, Stenestrand U, et al. Influence of renal function on the effects of early revascularization in non-ST-elevation myocardial infarction: data from the Swedish web-system for enhancement and development of evidence-based care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). Circulation. 2009;120(10):851–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Brown JR, Solomon RJ, Sarnak MJ, McCullough PA, Splaine ME, Davies L, et al. Reducing contrast-induced acute kidney injury using a regional multicenter quality improvement intervention. Circ Cardiovasc Qual Outcomes. 2014;7(5):693–700.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Fetterly KA, Mathew V, Lennon R, Bell MR, Holmes DR Jr, Rihal CS. Radiation dose reduction in the invasive cardiovascular laboratory: implementing a culture and philosophy of radiation safety. JACC Cardiovasc Interv. 2012;5(8):866–73.CrossRefPubMedGoogle Scholar
  78. 78.
    Ploussi A, Efstathopoulos EP. Importance of establishing radiation protection culture in radiology department. World J Radiol. 2016;8(2):142–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Cardiovascular Medicine, Department of MedicineState University of New York at Stony BrookStony BrookUSA

Personalised recommendations