Advertisement

The Role of Cardiac Biomarkers in Pregnancy

  • Emily S. Lau
  • Amy SarmaEmail author
Pregnancy and Cardiovascular Disease (N Scott, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pregnancy and Cardiovascular Disease

Opinion statement

Cardiovascular disease (CVD) is the leading cause of pregnancy-associated mortality, with an increasingly complex pregnant population. While our understanding of CVD in pregnancy continues to evolve, there remains a need to develop widely accessible tools to follow pregnant women both with and without preexisting disease with respect to cardiovascular risk, particularly for those presenting with symptoms suggestive of cardiovascular pathology. Thus, research is emerging with respect to the potential role of novel and established cardiac biomarkers in diagnosing and following CVD in pregnancy. Here, we review the normal hemodynamics of pregnancy and the behavior of various biomarkers in both normal and complicated pregnancies.

Keywords

Pregnancy Cardiac biomarkers Preeclampsia Peripartum cardiomyopathy 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of great importance

  1. 1.
    • Knight M, Nair M, Tuffnell D, Kenyon S, Shakespeare J, Brocklehurst P, et al. Saving lives, improving mothers’ care. Surveillance of maternal deaths in the UK 2012–14 and lessons learned to inform maternity care from the UK and Ireland confidential enquiries into maternal deaths and morbidity 2009–14. 2016 [cited 2/21/2017]. [cited 2/21/2017]. Available from: https://www.npeu.ox.ac.uk/downloads/files/mbrrace-uk/reports/MBRRACE-UK%20Maternal%20Report%202016%20-%20website.pdf. This report summarizes the causes of maternal mortality including cardiovascular causes in the United Kingdom from 2009–2014.
  2. 2.
    Hameed AB, Lawton ES, McCain CL, Morton CH, Mitchell C, Main EK, et al. Pregnancy-related cardiovascular deaths in California: beyond peripartum cardiomyopathy. Am J Obstet Gynecol. 2015;213(3):379 e1–10.CrossRefGoogle Scholar
  3. 3.
    Nanna M, Stergiopoulos K. Pregnancy complicated by valvular heart disease: an update. J Am Heart Assoc. 2014;3(3):e000712.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Easterling TR, Benedetti TJ, Schmucker BC, Millard SP. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol. 1990;76(6):1061–9.PubMedGoogle Scholar
  5. 5.
    Geva T, Mauer MB, Striker L, Kirshon B, Pivarnik JM. Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am Heart J. 1997;133(1):53–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Mabie WC, DiSessa TG, Crocker LG, Sibai BM, Arheart KL. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol. 1994;170(3):849–56.CrossRefPubMedGoogle Scholar
  7. 7.
    Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological hypertrophy of pregnancy. Circulation. 1996;94(4):667–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Phys. 1989;256(4 Pt 2):H1060–5.Google Scholar
  9. 9.
    Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68(6):540–3.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Robson SC, Dunlop W, Moore M, Hunter S. Combined Doppler and echocardiographic measurement of cardiac output: theory and application in pregnancy. Br J Obstet Gynaecol. 1987;94(11):1014–27.CrossRefPubMedGoogle Scholar
  11. 11.
    Robson SC, Dunlop W, Boys RJ, Hunter S. Cardiac output during labour. Br Med J. 1987;295(6607):1169–72.CrossRefGoogle Scholar
  12. 12.
    Robson SC, Hunter S, Moore M, Dunlop W. Haemodynamic changes during the puerperium: a Doppler and M-mode echocardiographic study. Br J Obstet Gynaecol. 1987;94(11):1028–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Savu O, Jurcut R, Giusca S, van Mieghem T, Gussi I, Popescu BA, et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circulation Cardiovascular imaging. 2012;5(3):289–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Yurteri-Kaplan L, Saber S, Zamudio S, Srinivasan D, Nyirenda T, Alvarez M, et al. Brain natriuretic peptide in term pregnancy. Reprod Sci. 2012;19(5):520–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Hameed AB, Chan K, Ghamsary M, Elkayam U. Longitudinal changes in the B-type natriuretic peptide levels in normal pregnancy and postpartum. Clin Cardiol. 2009;32(8):E60–2.CrossRefPubMedGoogle Scholar
  16. 16.
    Mayama M, Yoshihara M, Uno K, Tano S, Takeda T, Ukai M, et al. Factors influencing brain natriuretic peptide levels in healthy pregnant women. Int J Cardiol. 2017;228:749–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Resnik JL, Hong C, Resnik R, Kazanegra R, Beede J, Bhalla V, et al. Evaluation of B-type natriuretic peptide (BNP) levels in normal and preeclamptic women. Am J Obstet Gynecol. 2005;193(2):450–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Afshani N, Moustaqim-Barrette A, Biccard BM, Rodseth RN, Dyer RA. Utility of B-type natriuretic peptides in preeclampsia: a systematic review. Int J Obstet Anesth. 2013;22(2):96–103.CrossRefPubMedGoogle Scholar
  19. 19.
    Pasupathi P, Manivannan U, Manivannan P, Deepa M. Cardiac troponins and oxidative stress markers in non-pregnant, pregnant and preeclampsia women. Bangladesh Med Res Counc Bull. 2010;36(1):4–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Shivvers SA, Wians FH Jr, Keffer JH, Ramin SM. Maternal cardiac troponin I levels during normal labor and delivery. Am J Obstet Gynecol. 1999;180(1 Pt 1):122.CrossRefPubMedGoogle Scholar
  21. 21.
    Dogan R, Birdane A, Bilir A, Ekemen S, Tanriverdi B. Frequency of electrocardiographic changes indicating myocardial ischemia during elective cesarean delivery with regional and general anesthesia: detection based on continuous Holter monitoring and serum markers of ischemia. J Clin Anesth. 2008;20(5):347–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Smith R, Silversides C, Downey K, Newton G, Macarthur A. Assessing the incidence of peripartum subclinical myocardial ischemia using the troponin T assay: an observational pilot study. Int J Obstet Anesth. 2015;24(1):30–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstetrics and gynecology. 2013;122(5):1122–31.Google Scholar
  24. 24.
    Walker JJ. Pre-eclampsia. Lancet (London, England). 2000;356(9237):1260–5.CrossRefGoogle Scholar
  25. 25.
    Ananth CV, Keyes KM, Wapner RJ. Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ (Clinical research ed). 2013;347:f6564.Google Scholar
  26. 26.
    Fong A, Chau CT, Pan D, Ogunyemi DA. Clinical morbidities, trends, and demographics of eclampsia: a population-based study. Am J Obstet Gynecol. 2013;209(3):229 e1–7.CrossRefGoogle Scholar
  27. 27.
    Melchiorre K, Sharma R, Thilaganathan B. Cardiovascular implications in preeclampsia: an overview. Circulation. 2014;130(8):703–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Rafik Hamad R, Larsson A, Pernow J, Bremme K, Eriksson MJ. Assessment of left ventricular structure and function in preeclampsia by echocardiography and cardiovascular biomarkers. J Hypertens. 2009;27(11):2257–64.CrossRefPubMedGoogle Scholar
  29. 29.
    Alvarez-Fernandez I, Prieto B, Rodriguez V, Ruano Y, Escudero AI, Alvarez FV. N-terminal pro B-type natriuretic peptide and angiogenic biomarkers in the prognosis of adverse outcomes in women with suspected preeclampsia. Clinica chimica acta; international journal of clinical chemistry. 2016;463:150–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Uyar I, Kurt S, Demirtas O, Gurbuz T, Aldemir OS, Keser B, et al. The value of uterine artery Doppler and NT-proBNP levels in the second trimester to predict preeclampsia. Arch Gynecol Obstet. 2015;291(6):1253–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Junus K, Wikstrom AK, Larsson A, Olovsson M. Early second-trimester plasma levels of NT-proBNP in women who subsequently develop early-onset preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2016:1–3.Google Scholar
  32. 32.
    Sadlecki P, Grabiec M, Walentowicz-Sadlecka M. Prenatal clinical assessment of NT-proBNP as a diagnostic tool for preeclampsia, gestational hypertension and gestational diabetes mellitus. PLoS One. 2016;11(9):e0162957.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Joyal D, Leya F, Koh M, Besinger R, Ramana R, Kahn S, et al. Troponin I levels in patients with preeclampsia. Am J Med. 2007;120(9):819 e13–4.CrossRefGoogle Scholar
  34. 34.
    Aydin C, Baloglu A, Cetinkaya B, Yavuzcan A. Cardiac troponin levels in pregnant women with severe pre-eclampsia. Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology. 2009;29(7):621–3.CrossRefGoogle Scholar
  35. 35.
    Atis A, Aydin Y, Basol E, Goker N. Troponin I and homocysteine levels in mild and severe preeclampsia. Clinical and experimental obstetrics & gynecology. 2010;37(1):21–3.Google Scholar
  36. 36.
    Fleming SM, O’Gorman T, Finn J, Grimes H, Daly K, Morrison JJ. Cardiac troponin I in pre-eclampsia and gestational hypertension. BJOG : an international journal of obstetrics and gynaecology. 2000;107(11):1417–20.CrossRefGoogle Scholar
  37. 37.
    Pergialiotis V, Prodromidou A, Frountzas M, Perrea DN, Papantoniou N. Maternal cardiac troponin levels in pre-eclampsia: a systematic review. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2016;29(20):3386–90.Google Scholar
  38. 38.
    Yang X, Wang H, Wang Z, Dong M. Alteration and significance of serum cardiac troponin I and cystatin C in preeclampsia. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2006;374(1–2):168–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Atalay C, Erden G, Turhan T, Yildiran G, Saracoglu OF, Koca Y. The effect of magnesium sulfate treatment on serum cardiac troponin I levels in preeclamptic women. Acta Obstet Gynecol Scand. 2005;84(7):617–21.CrossRefPubMedGoogle Scholar
  40. 40.
    Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.CrossRefPubMedGoogle Scholar
  41. 41.
    Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Radulescu C, Bacarea A, Hutanu A, Gabor R, Dobreanu M. Placental growth factor, soluble fms-like tyrosine kinase 1, soluble endoglin, IL-6, and IL-16 as biomarkers in preeclampsia. Mediat Inflamm. 2016;2016:3027363.CrossRefGoogle Scholar
  43. 43.
    Vatten LJ, Eskild A, Nilsen TI, Jeansson S, Jenum PA, Staff AC. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Am J Obstet Gynecol. 2007;196(3):239.e1–6.CrossRefGoogle Scholar
  44. 44.
    Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.CrossRefPubMedGoogle Scholar
  45. 45.
    Verlohren S, Herraiz I, Lapaire O, Schlembach D, Moertl M, Zeisler H, et al. The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am J Obstet Gynecol. 2012;206(1):58.e1–8.CrossRefGoogle Scholar
  46. 46.
    Villa PM, Hamalainen E, Maki A, Raikkonen K, Pesonen AK, Taipale P, et al. Vasoactive agents for the prediction of early- and late-onset preeclampsia in a high-risk cohort. BMC pregnancy and childbirth. 2013;13:110.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rana S, Powe CE, Salahuddin S, Verlohren S, Perschel FH, Levine RJ, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 2012;125(7):911–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    • Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22. A prospective multicenter observational study establishing that a sFlt-1 to PlGF ratio of 38 or lower for women with suspected pre-eclampsia has a high negative predictive value for excluding disease in the short term.CrossRefPubMedGoogle Scholar
  49. 49.
    Shahul S, Medvedofsky D, Wenger JB, Nizamuddin J, Brown SM, Bajracharya S, et al. Circulating antiangiogenic factors and myocardial dysfunction in hypertensive disorders of pregnancy. Hypertension. 2016;67(6):1273–80.CrossRefPubMedGoogle Scholar
  50. 50.
    Arany Z, Elkayam U. Peripartum cardiomyopathy. Circulation. 2016;133(14):1397–409.CrossRefPubMedGoogle Scholar
  51. 51.
    Pearson GD, Veille JC, Rahimtoola S, Hsia J, Oakley CM, Hosenpud JD, et al. Peripartum cardiomyopathy: National Heart, Lung, and Blood Institute and Office of Rare Diseases (National Institutes of Health) workshop recommendations and review. JAMA. 2000;283(9):1183–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest. 2013;123(5):2143–54.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Forster O, Hilfiker-Kleiner D, Ansari AA, Sundstrom JB, Libhaber E, Tshani W, et al. Reversal of IFN-gamma, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy. Eur J Heart Fail. 2008;10(9):861–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Li W, Li H, Long Y. Clinical characteristics and long-term predictors of persistent left ventricular systolic dysfunction in peripartum cardiomyopathy. The Canadian Journal of Cardiology. 2016;32(3):362–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Hu CL, Li YB, Zou YG, Zhang JM, Chen JB, Liu J, et al. Troponin T measurement can predict persistent left ventricular dysfunction in peripartum cardiomyopathy. Heart. 2007;93(4):488–90.CrossRefPubMedGoogle Scholar
  56. 56.
    Damp J, Givertz MM, Semigran M, Alharethi R, Ewald G, Felker GM, et al. Relaxin-2 and soluble Flt1 levels in peripartum cardiomyopathy: results of the Multicenter IPAC Study. JACC Heart failure. 2016;4(5):380–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sliwa K, Forster O, Libhaber E, Fett JD, Sundstrom JB, Hilfiker-Kleiner D, et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur Heart J. 2006;27(4):441–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Ismail S, Wong C, Rajan P, Vidovich MI. ST-elevation acute myocardial infarction in pregnancy: 2016 update. Clinical Cardiology. 2017.Google Scholar
  59. 59.
    Regitz-Zagrosek V, Seeland U, Geibel-Zehender A, Gohlke-Barwolf C, Kruck I, Schaefer C. Cardiovascular diseases in pregnancy. Deutsches Arzteblatt international. 2011;108(16):267–73.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Tanous D, Siu SC, Mason J, Greutmann M, Wald RM, Parker JD, et al. B-type natriuretic peptide in pregnant women with heart disease. J Am Coll Cardiol. 2010;56(15):1247–53.CrossRefPubMedGoogle Scholar
  61. 61.
    Kampman MA, Balci A, van Veldhuisen DJ, van Dijk AP, Roos-Hesselink JW, Sollie-Szarynska KM, et al. N-terminal pro-B-type natriuretic peptide predicts cardiovascular complications in pregnant women with congenital heart disease. Eur Heart J. 2014;35(11):708–15.CrossRefPubMedGoogle Scholar
  62. 62.
    •• Canobbio MM, Warnes CA, Aboulhosn J, Connolly HM, Khanna A, Koos BJ, et al. Management of pregnancy in patients with complex congenital heart disease: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2017;135(8):e50–87. Recently published guidelines by the American Heart Association on the management of pregnancy in women with complex congenital heart disease.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of CardiologyMassachusetts General HospitalBostonUSA

Personalised recommendations