Promise of SGLT2 Inhibitors in Heart Failure: Diabetes and Beyond

  • Pieter Martens
  • Chantal Mathieu
  • Frederik H. Verbrugge
Heart Failure (W Tang, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Heart Failure

Opinion statement

This review provides mechanistic insight in the pleiotropic effects of sodium-glucose transporter-2 (SGLT-2) inhibitors with particular interest to the pathophysiology of heart failure. The SGLT-2 inhibitor empagliflozin has recently demonstrated an unprecedented 38% reduction in cardiovascular mortality in patients with diabetes. Despite modest effects on long-term glycemic control, highly significant reductions in heart failure admissions and end-stage kidney disease were observed. SGLT-2 inhibitors are the latest approved class of glucose-lowering agents. By blocking sodium/glucose uptake in the proximal tubules of the nephron, they induce glycosuria. Treatment with SGLT-2 inhibitors in diabetes leads to a sustained ∼1% reduction in glycated hemoglobin levels, with favorable reductions in both arterial blood pressure (∼3–6 mmHg) and body weight (∼2–4 kg/m2). However, those effects fail to explain fully the dramatic reduction in cardiovascular mortality, heart failure readmissions, and end-stage kidney disease. The unique pharmacological profile of SGLT-2 inhibitors puts them at the crossroads of important hemodynamic, neurohumoral, metabolic, and vascular endothelial pathways influencing cardiac and renal disease. SGLT-2 inhibitors decrease proximal tubular sodium and chloride reabsorption, leading to a reset of the tubuloglomerular feedback. This induces plasma volume contraction without activation of the sympathetic nerve system, decreases harmful glomerular hyper-filtration leading to better long-term renal preservation, and improves diuretic and natriuretic responses to other diuretic agents. Moreover, SGLT-2 inhibitors might improve the efficiency of myocardial energetics by offering β-hydroxybutyrate as an attractive fuel for oxidation and increase hematocrit improving oxygen transport. Finally, decreased vascular stiffness and improved endothelial function are observed with the use of SGLT-2 inhibitors in diabetes. Those multiple nonglycemic effects reinforce SGLT-2 inhibitors as the preferred glucose-lowering drug to treat diabetic patients with heart failure. In the future, they might even be considered in heart failure or chronic kidney disease patients without diabetes.


Diabetes mellitus Energy metabolism Glomerular filtration rate Heart failure Plasma volume Sodium-glucose transporter 2 


Compliance with Ethical Standards

Conflict of Interest

Pieter Martens is supported by a doctoral fellowship by the Research Foundation – Flanders (FWO, 1127917N) and is a researcher for the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk (LSM), Hasselt University, Ziekenhuis Oost-Limburg and Jessa Hospital.

Chantal Mathieu and Frederik H. Verbrugge each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CS, Cowie MR, et al. Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 2014;64(21):2281–93.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol. 2006;47(1):76–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50(8):768–77.CrossRefPubMedGoogle Scholar
  4. 4.
    Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Cubbon RM, Woolston A, Adams B, Gale CP, Gilthorpe MS, Baxter PD, et al. Prospective development and validation of a model to predict heart failure hospitalisation. Heart. 2014;100(12):923–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    • Fitchett DH, Udell JA, Inzucchi SE. Heart failure outcomes in clinical trials of glucose-lowering agents in patients with diabetes. Eur J Heart Fail. 2016. Recent meta-analysis providing an insightful overview of heart failure outcomes in clinical trials with glucose lowering drugs in patients with diabetes.Google Scholar
  8. 8.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.CrossRefPubMedGoogle Scholar
  9. 9.
    Komajda M, McMurray JJ, Beck-Nielsen H, Gomis R, Hanefeld M, Pocock SJ, et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J. 2010;31(7):824–31.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    • Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26. Large trial designed to prove cardiovascular safety of the dipeptidyl peptidase-4 inhibitor saxagliptin that showed an increased risk for heart failure.CrossRefPubMedGoogle Scholar
  11. 11.
    •• Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. The only trial powered for cardiovascular end-points evaluation with a sodium-glucose transporter-2 inhibitor showing an unprecedented 38% reduction in cardiovascular mortality.CrossRefPubMedGoogle Scholar
  12. 12.
    Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira-Souza M, Bordin S, et al. Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology. 2008;149(2):717–24.CrossRefPubMedGoogle Scholar
  14. 14.
    Vidotti DB, Arnoni CP, Maquigussa E, Boim MA. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol. 2008;28(1):107–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Schnermann J. Juxtaglomerular cell complex in the regulation of renal salt excretion. Am J Physiol. 1998;274(2 Pt 2):R263–79.PubMedGoogle Scholar
  16. 16.
    Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol. 1999;10(12):2569–76.PubMedGoogle Scholar
  17. 17.
    Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Ren Physiol. 2013;304(2):F156–67.CrossRefGoogle Scholar
  18. 18.
    Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Ren Physiol. 2014;306(2):F194–204.CrossRefGoogle Scholar
  19. 19.
    Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol. 2013;1(2):140–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16(5):457–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262–75. e9.CrossRefPubMedGoogle Scholar
  22. 22.
    Oliva RV, Bakris GL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8(5):330–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.Google Scholar
  24. 24.
    Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.CrossRefPubMedGoogle Scholar
  25. 25.
    Group AS, Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28.CrossRefGoogle Scholar
  26. 26.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Control G, Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288–98.CrossRefGoogle Scholar
  28. 28.
    • Udell JA, Cavender MA, Bhatt DL, Chatterjee S, Farkouh ME, Scirica BM. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2015;3(5):356–66. Recent meta-analysis providing an insightful overview of cardiovascular outcomes in clinical trials with glucose lowering drugs in patients with diabetes.CrossRefPubMedGoogle Scholar
  29. 29.
    Hippisley-Cox J, Coupland C. Diabetes treatments and risk of heart failure, cardiovascular disease, and all cause mortality: cohort study in primary care. BMJ. 2016;354:i3477.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27(1):256–63.CrossRefPubMedGoogle Scholar
  31. 31.
    • Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2016;37(19):1526–34. Subanalysis of the EMPA-REG trial with empagliflozin (reference 11) with focus on heart failure reduction achieved with this medication.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    •• Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323–34. Subanalysis of the EMPA-REG trial with empagliflozin (reference 11) clearly demonstrating the renoprotective effect of empagliflozin in diabetes.CrossRefPubMedGoogle Scholar
  33. 33.
    • Verbrugge FH, Dupont M, Steels P, Grieten L, Swennen Q, Tang WH, et al. The kidney in congestive heart failure: ‘are natriuresis, sodium, and diuretics really the good, the bad and the ugly?’. Eur J Heart Fail. 2014;16(2):133–42. This review on renal sodium handling in heart failure comprehensively explains the rationale behind inhibition of proximal tubular sodium reabsorption in heart failure which is a major effect of sodium-glucose transporter-2 inhibitors.CrossRefPubMedGoogle Scholar
  34. 34.
    Miller WL, Mullan BP. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation. JACC Heart Fail. 2014;2(3):298–305.CrossRefPubMedGoogle Scholar
  35. 35.
    Nijst P, Verbrugge FH, Grieten L, Dupont M, Steels P, Tang WH, et al. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol. 2015;65(4):378–88.CrossRefPubMedGoogle Scholar
  36. 36.
    Kalra PR, Anagnostopoulos C, Bolger AP, Coats AJ, Anker SD. The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol. 2002;39(12):1901–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    van der Meer P, Postmus D, Ponikowski P, Cleland JG, O’Connor CM, Cotter G, et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol. 2013;61(19):1973–81.CrossRefPubMedGoogle Scholar
  39. 39.
    Testani JM, Brisco MA, Chen J, McCauley BD, Parikh CR, Tang WH. Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. J Am Coll Cardiol. 2013;62(6):516–24.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Verbrugge FH, Vangoitsenhoven R, Mullens W, Van der Schueren BJ, Mathieu C, Tang WH. SGLT-2 inhibitors: potential novel strategy to prevent congestive heart failure in diabetes? Curr Cardiovasc Risk Rep. 2015;9:38.CrossRefGoogle Scholar
  41. 41.
    • Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62. Important study highlighting that plasma volume is decreased after treatment with the sodium-glucose transporter-2 inhibitor dapagliflozin in diabetes.CrossRefPubMedGoogle Scholar
  42. 42.
    Cheungpasitporn W, Thongprayoon C, Chiasakul T, Korpaisarn S, Erickson SB. Renin-angiotensin system inhibitors linked to anemia: a systematic review and meta-analysis. QJM. 2015;108(11):879–84.CrossRefPubMedGoogle Scholar
  43. 43.
    • Cherney DZ, Scholey JW, Jiang S, Har R, Lai V, Sochett EB, et al. The effect of direct renin inhibition alone and in combination with ACE inhibition on endothelial function, arterial stiffness, and renal function in type 1 diabetes. Diabetes Care. 2012;35(11):2324–30. Insightful study demonstrating that the sodium-glucose transporter-2 inhibitor empagliflozin was able to reverse glomerular hyperfiltration in diabetes.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    • Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14. Interesting review explaining the hypothesis that sodium-glucose transporter-2 inhibitors improve cardiac metabolism in diabetes by stimulating β-hydroxybutyrate oxidation as an efficient energy fuel.CrossRefPubMedGoogle Scholar
  45. 45.
    Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95(2):405–511.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Ren Physiol. 2013;304(4):F333–47.CrossRefGoogle Scholar
  47. 47.
    Holtkamp FA, de Zeeuw D, Thomas MC, Cooper ME, de Graeff PA, Hillege HJ, et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 2011;80(3):282–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Testani JM, Kimmel SE, Dries DL, Coca SG. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ Heart Fail. 2011;4(6):685–91.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zingerman B, Herman-Edelstein M, Erman A, Bar Sheshet Itach S, Ori Y, Rozen-Zvi B, et al. Effect of acetazolamide on obesity-induced glomerular hyperfiltration: a randomized controlled trial. PLoS One. 2015;10(9):e0137163.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587–97.CrossRefPubMedGoogle Scholar
  51. 51.
    Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.CrossRefPubMedGoogle Scholar
  52. 52.
    Verbrugge FH, Dupont M, Bertrand PB, Nijst P, Penders J, Dens J, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol. 2015;70(3):265–73.PubMedGoogle Scholar
  53. 53.
    Verbrugge FH, Mullens W, Tang WH. Management of cardio-renal syndrome and diuretic resistance. Curr Treat Options Cardiovasc Med. 2016;18(2):11.CrossRefPubMedGoogle Scholar
  54. 54.
    Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007;356(11):1140–51.CrossRefPubMedGoogle Scholar
  55. 55.
    Ferrannini E, Santoro D, Bonadonna R, Natali A, Parodi O, Camici PG. Metabolic and hemodynamic effects of insulin on human hearts. Am J Physiol. 1993;264(2 Pt 1):E308–15.PubMedGoogle Scholar
  56. 56.
    Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, et al. Insulin, ketone bodies, and mitochondrial energy transduction. Faseb J. 1995;9(8):651–8.PubMedGoogle Scholar
  57. 57.
    Diamant M, Lamb HJ, Groeneveld Y, Endert EL, Smit JW, Bax JJ, et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol. 2003;42(2):328–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, Patil S, et al. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes. 2002;51(8):2587–95.CrossRefPubMedGoogle Scholar
  59. 59.
    Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Inagaki N, Kondo K, Yoshinari T, Takahashi N, Susuta Y, Kuki H. Efficacy and safety of canagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled with diet and exercise: a 24-week, randomized, double-blind, placebo-controlled, Phase III study. Expert Opin Pharmacother. 2014;15(11):1501–15.CrossRefPubMedGoogle Scholar
  61. 61.
    Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(6116):211–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455–69.CrossRefPubMedGoogle Scholar
  63. 63.
    Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension. 2009;54(2):409–13.CrossRefPubMedGoogle Scholar
  64. 64.
    Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217–24.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lytvyn Y, Perkins BA, Cherney DZ. Uric acid as a biomarker and a therapeutic target in diabetes. Can J Diabetes. 2015;39(3):239–46.CrossRefPubMedGoogle Scholar
  66. 66.
    • Wu JH, Foote C, Blomster J, Toyama T, Perkovic V, Sundstrom J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4(5):411–9. Recent meta-analysis comprising over 35,000 patients focusing on safety and adverse events of sodium-glucose transporter-2 inhibitors in diabetes.CrossRefPubMedGoogle Scholar
  67. 67.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr., Drazner MH, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pieter Martens
    • 1
    • 2
  • Chantal Mathieu
    • 3
  • Frederik H. Verbrugge
    • 1
  1. 1.Department of CardiologyZiekenhuis Oost-LimburgGenkBelgium
  2. 2.Doctoral School for Medicine and Life SciencesHasselt UniversityDiepenbeekBelgium
  3. 3.Department of Clinical and Experimental MedicineUniversity Hospital LeuvenLeuvenBelgium

Personalised recommendations