Comprehensive Approach to Management of Critical Limb Ischemia

Vascular Disease (R Schainfeld, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Vascular Disease

Opinion statement

Fighting major amputation has been one out of the four priorities of the World Health Organization (WHO) for a decade. If we consider that according to all epidemiological studies, the number of diabetic people is expected to double by 2030, the worse complication of this disease could represent a big sanitary, social, and economic problem in the near future. In developed countries, the cost of treatment for diabetic disease-related foot problems represents 15 – 25 % of available resources for the treatment of diabetes in general, but in some developing countries, the same cost may reach up to 40 % of available resources for diabetic disease. On the positive side, currently over 90 % of all diabetes-related amputations may be prevented thanks to the education of diabetic patients as primary prevention, and mainly to the new non-surgical revascularization techniques, which effectively fight the consequences of diabetic arteriopathy as a secondary prevention. The virtual pathway in reducing lower limb amputations starts with a better comprehension of critical limb ischemia (CLI), particularly its diagnostic aspects and consequent revascularization treatment. For 15 years we have assisted in a spectacular improvement of revascularization modalities and particularly of endovascular interventions. As a consequence, a large series of treated patients have shown the possibility to reduce the risk of limb loss in subjects at a higher risk to a rate of 1.7 – 2.4 %. Management of CLI requires integrating clinical, interventional, and surgical competencies together to a significant cultural advancement of every single physician involved in reducing the risk of limb loss. Consensus documents and international guidelines are, in general, precious opportunities to promote cultural and scientific upgrading of the involved specialist, but their results sometimes do not meet the physician’s expectations. A close look into the available scientific literature adopted for scientific statements reveals an urgent need for standardized reporting of demographic data, severity of disease, and outcome of the studied population.


Arterial occlusive disease Endovascular techniques Critical limb ischemia Peripheral vascular disease Arteries Revascularization Limb salvage 

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res. 2001;49(3):554–60.PubMedCrossRefGoogle Scholar
  2. 2.
    van Golde JM, Ruiter MS, Schaper NC, et al. Impaired collateral recruitment and outward remodeling in experimental diabetes. Diabetes. 2008;57:2818–23.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    LoGerfo FW, Coffman JD. Vascular and microvascular disease in the diabetic foot: implications for foot care. NEJM. 1984;311:1615–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Norgren L, Hiatt WR, Dormandy JA, on behalf of the TASC II Working Group, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33:S1eS75.CrossRefGoogle Scholar
  5. 5.
    Faglia E, Favales F, Aldeghi A, et al. Change in major amputation rate in a center dedicated to diabetic foot care during the 1980s: prognostic determinants for major amputation. J Diabet Complicat. 1998;12:96–102.CrossRefGoogle Scholar
  6. 6.
    Faglia E, Favales F, Morabito A. New ulceration, new major amputation, and survival rates in diabetic subjects hospitalized for foot ulceration from 1990 to 1993. Diabetes Care. 2001;24:78–83.PubMedCrossRefGoogle Scholar
  7. 7.•
    Shanahan CM, Cary NRB, Salisbury JR, et al. Medial localization of mineralization-regulating proteins in association with Mönckeberg’s sclerosis: evidence for smooth muscle cell–mediated vascular calcification. Circulation. 1999;100:2168–76. Exhaustive statement of the differences between atherosclerosis and diabetic macroangiopathy.PubMedCrossRefGoogle Scholar
  8. 8.
    Rutherford RB, Baker JD, Ernst C, et al. Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg. 1997;26:517–38.PubMedCrossRefGoogle Scholar
  9. 9.
    Sianos G, Morel MA, Kappetein AP, et al. The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1:219–27.PubMedGoogle Scholar
  10. 10.
    Serruys PW, Morice MC, Pieter Kappetein A, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Graziani L, Silvestro A. Alternative approaches in critical limb ischemia. London, UK: Gosling ed.; 2006. Clinical Vision;17:2-7. (
  12. 12.
    de Meijer VE, Van't Sant HP, Spronk S, Kusters FJ, den Hoed PT. Reference value of transcutaneous oxygen measurement in diabetic patients compared with nondiabetic patients. J Vasc Surg. 2008;48(2):382–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Melillo E, Ferrari M, Balbarini A, Pedrinelli R. Transcutaneous oxygen and carbon dioxide levels with iloprost administration in diabetic critical limb ischemia. Vasc Endovasc Surg. 2006;40(4):303–11.CrossRefGoogle Scholar
  14. 14.
    Faglia E, Clerici G, Caminiti M, Quarantiello A, Curci V, Morabito A. Predictive values of transcutaneous oxygen tension for above-the-ankle amputation in diabetic patients with critical limb ischemia. Eur J Vasc Endovasc Surg. 2007;33(6):731–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Faglia E, Clerici G, Clerissi J, Mantero M, Caminiti M, Quarantiello A, et al. When is a technically successful peripheral angioplasty effective in preventing above-the-ankle amputation in diabetic patients with critical limb ischaemia? Diabet Med. 2007;24(8):823–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Caselli A, Latini V, Lapenna A, Di Carlo S, Pirozzi F, Benvenuto A, et al. Transcutaneous oxygen tension monitoring after successful revascularization in diabetic patients with ischaemic foot ulcers. Diabet Med. 2005;22(4):460–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Neville RF, Attinger CE, Bulan EJ, Ducic I, Thomassen M, Sidawy AN. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg. 2009;23:367–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Diabetes-related amputations of lower extremities in the Medicare population of Minnesota, 1993–1995. MMWR Morb Mortal Wkly Rep. 1998;47:649–652.Google Scholar
  19. 19.
    Graziani L, Silvestro A, Bertone V, et al. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg. 2007;33:453–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor GI, Pan WR. Angiosomes of the leg: anatomic study and clinical implications. Plast Reconstr Surg. 1998;102:599–616.PubMedCrossRefGoogle Scholar
  21. 21.
    Gray's Anatomy: the anatomical basis of clinical practice. 40th edn. Philadelphia, Pa: Churchill-Livingstone, Elsevier; 2008, p. 1576.Google Scholar
  22. 22.
    Golomb BA, Dang TT, Criqui MH. Peripheral arterial disease. Morbidity and mortality implications. Circulation. 2006;114:668–99.Google Scholar
  23. 23.
    Pasqualini L, Schillaci G, Vaudo G, et al. Predictors of overall and cardiovascular mortality in peripheral arterial disease. Am J Cardiol. 2001;88:1057–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Monaco M, Stassano P, Di Tommaso L, et al. Systematic strategy of prophylactic coronary angiography improves long-term outcome after major vascular surgery in medium- to high-risk patients. A prospective, randomized study. J Am Coll Cardiol. 2009;54:989–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Edward O, McFalls EO, Ward HB, Moritz TE, et al. Coronary-artery revascularization before elective major vascular surgery. N Engl J Med. 2004;351:2795–804.CrossRefGoogle Scholar
  26. 26.
    Romiti M, Albers M, Brochado-Neto FC, et al. Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg. 2008;47:975–81.PubMedCrossRefGoogle Scholar
  27. 27.•
    Graziani L, Piaggesi A. Indications and clinical outcomes for below knee endovascular therapy: review article. Catheter Cardiovasc Interv. 2010;75:433–43. Complete review about indications and follow-up BK endovascular treatment and foot surgery.PubMedGoogle Scholar
  28. 28.•
    Faglia E, Dalla Paola L, Clerici G, et al. Peripheral angioplasty as the first-choice revascularization procedure in diabetic patients with critical limb ischemia: Prospective Study of 993 Consecutive Patients Hospitalized and Followed Between 1999 and 2003. Eur J Vasc Endovasc Surg. 2005;29:620–7. The largest series ever published about endovascular in diabetic subjects with ischemic foot.PubMedCrossRefGoogle Scholar
  29. 29.
    Dorros G, Jaff MR, Dorros AM, Mathiak LM, He T. Tibioperoneal (outflow lesion) angioplasty can be used as a primary treatment in 235 patients with critical limb ischemia: five-year follow-up. Circulation. 2001;104:2057–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Lofberg AM, Lorelius LE, Karacagil S, Westman B, Almgren B, Berqgvist D. The use of below-knee percutaneous transluminal angioplasty in arterial occlusive disease casing chronic critical limb ischemia. Cardiovasc Interv Radiol. 1996;19:317–22.CrossRefGoogle Scholar
  31. 31.
    Soder HK, Manninen HI, Jaakkola P, Matsi PJ, Rasanen HT, Kaukanen E, et al. Prospective trial of infrapopliteal artery balloon angioplasty for critical limb ischemia: angiographic and clinical results. J Vasc Interv Radiol. 2000;11:1021–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Brillu C, Picquet J, Villapdierna F, Papon X, L’Hoste P, Jousset Y, et al. Percutaneous transluminal angioplasty for management of critical limb ischemia in arteries below the knee. Ann Vasc Surg. 2001;15:175–81.Google Scholar
  33. 33.
    Rand T, Basile A, Cejna M, Fleischmann D, Funovics M, Gschwendtner M, et al. PTA versus carbofilm-coated stents in infrapopliteal arteries: pilot study. Cardiovasc Intervent Radiol. 2006;29:29–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Staffa R, Leypold J, Vojtísek B. Pedal bypass versus PTA (percutaneous transluminal angioplasty) of the crural arteries. Rozhl Chir. 2003;82:516–21.PubMedGoogle Scholar
  35. 35.
    Matsagas MI, Rivera MA, Tran T, Mitchell A, Robless P, Davies AH, et al. Clinical outcome following infra-inguinal percutaneous transluminal angioplasy for critical limb ischemia. Cardiovasc Intervent Radiol. 2003;26:251–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Balmer H, Mahler F, Do D, Triller J, Baumgartner I. Balloon angioplasty in chronic critical limb ischemia: factors affecting clinical and angiographic outcome. J Endovasc Ther. 2002;9:403–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Ferraresi R, Centola M, Ferlini M, Da Ros R, Caravaggi C, Assaloni R, et al. Long-term outcomes after angioplasty of isolated, below-the-knee arteries in diabetic patients with critical limb ischaemia. Eur J Vasc Endovasc Surg. 2009;37(3):336–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Hinchliffe RJ, Andros G, Apelqvist J, et al. A systematic review of the effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral arterial disease. Diabetes Metab Res Rev. 2012;28 Suppl 1:179–217.PubMedCrossRefGoogle Scholar
  40. 40.
    Kandzari DE, Kiesz RS, Allie D, Walker C, Fail P, Ramaiah VG, et al. Procedural and clinical outcomes with catheter-based plaque excision in critical limb ischemia. J Endovasc Ther. 2006;13(1):12–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Owens CD, Ho KJ, Kim S, Schanzer A, Lin J, Matros E, et al. Refinement of survival prediction in patients undergoing lower extremity bypass surgery: stratification by chronic kidney disease classification. J Vasc Surg. 2007;45(5):944–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Toursarkissian B, Stefanidis D, Hagino RT, D'Ayala M, Schoolfield J, Shireman PK, et al. Early duplex-derived hemodynamic parameters after lower extremity bypass in diabetics: implications for mid-term outcomes. Ann Vasc Surg. 2002;16(5):601–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Schneider PA, Caps MT, Ogawa DY, Hayman ES. Intraoperative superficial femoral artery balloon angioplasty and popliteal to distal bypass graft: an option for combined open and endovascular treatment of diabetic gangrene. J Vasc Surg. 2001;33(5):955–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Leers SA, Reifsnyder T, Delmonte R, Caron M. Realistic expectations for pedal bypass grafts in patients with end-stage renal disease. J Vasc Surg. 1998;28(6):976–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor Jr LM, Porter JM. The clinical course of diabetics who require emergent foot surgery because of infection or ischemia. J Vasc Surg. 1987;6(5):454–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Wölfle KD, Bruijnen H, Reeps C, Reutemann S, Wack C, Campbell P, et al. Tibioperoneal arterial lesions and critical foot ischaemia: successful management by the use of short vein grafts and percutaneous transluminal angioplasty. Vasa. 2000;29(3):207–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Sigala F, Georgopoulos S, Langer S, Baunach C, Papalambros E, Sigalas K, et al. Outcome of infrainguinal revascularization for critical limb ischemia in diabetics with end stage renal disease. Vasa. 2006;35(1):15–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Gargiulo M, Maioli F, Ceccacci T, Morselli-Labate AM, Faggioli G, Freyrie A, et al. What's next after optimal infrapopliteal angioplasty? Clinical and ultrasonographic results of a prospective single-center study. J Endovasc Ther. 2008;15(3):363–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Hering J, Angelkort B, Keck N, Wilde J, Amann B. Long-term outcome of successful percutaneous transluminal angioplasty of the fibular artery in diabetic foot syndrome and single-vessel calf perfusion depends on doppler wave pattern at the forefoot. Vasa. 2010;39(1):67–75.PubMedCrossRefGoogle Scholar
  50. 50.
    Davidson 3rd JT, Callis JT. Arterial reconstruction of vessels in the foot and ankle. Ann Surg. 1993;217(6):699–708.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Johnson BL, Glickman MH, Bandyk DF, Esses GE. Failure of foot salvage in patients with end-stage renal disease after surgical revascularization. J Vasc Surg. 1995;22(3):280–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Mills JL, Gahtan V, Fujitani RM, Taylor SM, Bandyk DF. The utility and durability of vein bypass grafts originating from the popliteal artery for limb salvage. Am J Surg. 1994;168(6):646–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Pomposelli Jr FB, Marcaccio EJ, Gibbons GW, Campbell DR, Freeman DV, Burgess AM, et al. Dorsalis pedis arterial bypass: durable limb salvage for foot ischemia in patients with diabetes mellitus. J Vasc Surg. 1995;21(3):375–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Stonebridge PA, Tsoukas AI, Pomposelli Jr FB, Gibbons GW, Campbell DR, Freeman DV, et al. Popliteal-to-distal bypass grafts for limb salvage in diabetics. Eur J Vasc Surg. 1991;5(3):265–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Werneck CC, Lindsay TF. Tibial angioplasty for limb salvage in high-risk patients and cost analysis. Ann Vasc Surg. 2009;23(5):554–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Dosluoglu HH, Cherr GS, Lall P, Harris LM, Dryjski ML. Peroneal artery-only runoff following endovascular revascularizations is effective for limb salvage in patients with tissue loss. J Vasc Surg. 2008;48(1):137–43.PubMedCrossRefGoogle Scholar
  57. 57.
    Söderström M, Arvela E, Albäck A, Aho PS, Lepäntalo M. Healing of ischaemic tissue lesions after infrainguinal bypass surgery for critical leg ischaemia. Eur J Vasc Endovasc Surg. 2008;36(1):90–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Malmstedt J, Leander K, Wahlberg E, Karlström L, Alfredsson L, Swedenborg J. Outcome after leg bypass surgery for critical limb ischemia is poor in patients with diabetes: a population-based cohort study. Diabetes Care. 2008;31(5):887–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Hertzer NR, Bena JF, Karafa MT. A personal experience with the influence of diabetes and other factors on the outcome of infrainguinal bypass grafts for occlusive disease. J Vasc Surg. 2007;46(2):271–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Hughes K, Domenig CM, Hamdan AD, Schermerhorn M, Aulivola B, Blattman S, et al. Bypass to plantar and tarsal arteries: an acceptable approach to limb salvage. J Vasc Surg. 2004;40(6):1149–57.PubMedCrossRefGoogle Scholar
  61. 61.
    AhChong AK, Chiu KM, Wong MW, Hui HK, Yip AW. Diabetes and the outcome of infrainguinal bypass for critical limb ischaemia. ANZ J Surg. 2004;74(3):129–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Pomposelli FB, Kansal N, Hamdan AD, Belfield A, Sheahan M, Campbell DR, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003;37(2):307–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Dorweiler B, Neufang A, Schmiedt W, Oelert H. Pedal arterial bypass for limb salvage in patients with diabetes mellitus. Eur J Vasc Endovasc Surg. 2002;24(4):309–13.PubMedCrossRefGoogle Scholar
  64. 64.
    Toursarkissian B, Jones WT, D'Ayala MD, Shireman PK, Harrison A, Schoolfield J, et al. Does the efficacy of dorsalis pedis artery bypasses vary among diabetic patients of different ethnic backgrounds? Vasc Endovasc Surg. 2002;36(3):207–12.CrossRefGoogle Scholar
  65. 65.
    Reed AB, Conte MS, Belkin M, Mannick JA, Whittemore AD, Donaldson MC. Usefulness of autogenous bypass grafts originating distal to the groin. J Vasc Surg. 2002;35(1):48–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Kalra M, Gloviczki P, Bower TC, Panneton JM, Harmsen WS, Jenkins GD, et al. Limb salvage after successful pedal bypass grafting is associated with improved long-term survival. J Vasc Surg. 2001;33(1):6–16.PubMedCrossRefGoogle Scholar
  67. 67.
    Panneton JM, Gloviczki P, Bower TC, Rhodes JM, Canton LG, Toomey BJ. Pedal bypass for limb salvage: impact of diabetes on long-term outcome. Ann Vasc Surg. 2000;14(6):640–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosenblum BI, Pomposelli Jr FB, Giurini JM, Gibbons GW, Freeman DV, Chrzan JS, et al. Maximizing foot salvage by a combined approach to foot ischemia and neuropathic ulceration in patients with diabetes. A 5-year experience. Diabetes Care. 1994;17(9):983–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Isaksson L, Lundgren F. Prognostic factors for failure of primary patency within a year of bypass to the foot in patients with diabetes and critical ischaemia. Eur J Surg. 2000;166(2):123–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Tannenbaum GA, Pomposelli Jr FB, Marcaccio EJ, Gibbons GW, Campbell DR, Freeman DV, et al. Safety of vein bypass grafting to the dorsal pedal artery in diabetic patients with foot infections. J Vasc Surg. 1992;15(6):982–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Ramdev P, Rayan SS, Sheahan M, Hamdan AD, Logerfo FW, Akbari CM, et al. A decade experience with infrainguinal revascularization in a dialysis-dependent patient population. J Vasc Surg. 2002;36(5):969–74.PubMedCrossRefGoogle Scholar
  72. 72.
    Verhelst R, Bruneau M, Nicolas AL, Frangi R, El Khoury G, Noirhomme P, et al. Popliteal-to-distal bypass grafts for limb salvage. Ann Vasc Surg. 1997;11(5):505–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Woelfle KD, Lange G, Mayer H, Bruijnen H, Loeprecht H. Distal vein graft reconstruction for isolated tibioperoneal vessel occlusive disease in diabetics with critical foot ischaemia–does it work? Eur J Vasc Surg. 1993;7(4):409–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Woelfle KD, Bruijnen H, Loeprecht H. Infrapopliteal arterial occlusive disease in diabetics with critical foot ischaemia: the role of distal origin bypass grafts. Vasa. 2001;30 Suppl 58:40–3.CrossRefGoogle Scholar
  75. 75.
    Schneider JR, Walsh DB, McDaniel MD, Zwolak RM, Besso SR, Cronenwett JL. Pedal bypass versus tibial bypass with autogenous vein: a comparison of outcome and hemodynamic results. J Vasc Surg. 1993;17(6):1029–38.PubMedCrossRefGoogle Scholar
  76. 76.
    Mohan CR, Hoballah JJ, Martinasevic M, Chalmers RT, Sharp WJ, Kresowik TF, et al. Revascularization of the ischemic diabetic foot using popliteal artery inflow. Int Angiol. 1996;15(2):138–43.PubMedGoogle Scholar
  77. 77.•
    Faglia E, Mantero M, Caminiti M, et al. Extensive use of peripheral angioplasty, particularly infrapopliteal, in the treatment of ischaemic diabetic foot ulcers: clinical results of a multicentric study of 221 consecutive diabetic subjects. J Intern Med. 2002;252:225–32. The first series showing the effectiveness of endovascular DF limb salvage.PubMedCrossRefGoogle Scholar
  78. 78.
    Jämsén T, Manninen H, Tulla H, Matsi P. The final outcome of primary infrainguinal percutaneous transluminal angioplasty in 100 consecutive patients with chronic critical limb ischemia. J Vasc Interv Radiol. 2002;13(5):455–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Faglia E, Clerici G, Clerissi J, Gabrielli L, Losa S, Mantero M, et al. Long-term prognosis of diabetic patients with critical limb ischemia: a population-based cohort study. Diabetes Care. 2009;32(5):822–7.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Pua U, Wong DE. Angioplasty in critical limb ischaemia: one-year limb salvage results. Ann Acad Med Singap. 2008;37(3):224–9.PubMedGoogle Scholar
  81. 81.
    Saltzberg SS, Pomposelli Jr FB, Belfield AK, Sheahan MG, Campbell DR, Skillman JJ, et al. Outcome of lower-extremity revascularization in patients younger than 40 years in a predominantly diabetic population. J Vasc Surg. 2003;38(5):1056–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Uccioli L, Gandini R, Giurato L, Fabiano S, Pampana E, Spallone V, et al. Long-term outcomes of diabetic patients with critical limb ischaemia followed in a tertiary referral diabetic foot clinic. Diabetes Care. 2010;33(5):977–82.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Alexandrescu V, Hubermont G, Philips Y, Guillaumie B, Ngongang C, Coessens V, et al. Combined primary subintimal and endoluminal angioplasty for ischaemic inferior-limb ulcers in diabetic patients: 5-year practice in a multidisciplinary 'diabetic-foot' service. Eur J Vasc Endovasc Surg. 2009;37(4):448–56.PubMedCrossRefGoogle Scholar
  84. 84.
    Bargellini I, Petruzzi P, Scatena A, Cioni R, Cicorelli A, Vignali C, et al. Primary infrainguinal subintimal angioplasty in diabetic patients. Cardiovasc Intervent Radiol. 2008;31(4):713–22.PubMedCrossRefGoogle Scholar
  85. 85.
    Gibbons GW, Burgess AM, Guadagnoli E, Pomposelli FB Jr, Freeman DV, Campbell DR, Miller A, Marcaccio EJ Jr, Nordberg P, LoGerfo FW. Return to wellbeing and function after infrainguinal revascularization. J Vasc Surg. 1995;21(1):35–44Google Scholar
  86. 86.
    Zayed H, Halawa M, Maillardet L, Sidhu PS, Edmonds M, Rashid H. Improving limb salvage rate in diabetic patients with critical leg ischaemia using a multidisciplinary approach. Int J Clin Pract. 2009;63(6):855–8Google Scholar
  87. 87.
    Antoniou GA, Chalmers N, Georgiadis GS, et al. A meta-analysis of endovascular versus surgical reconstruction of femoropopliteal arterial disease. J Vasc Surg. 2013;57:242–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Goodney PP, Beck AW, Nagle J, Welch HG, Zwolak RM. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50:54–60.PubMedCrossRefGoogle Scholar
  89. 89.
    Hammerstrøm KT, Bjørndal A. If there are no randomized controlled trials, is the implication always that we need more research? Cochrane Database Syst Rev. 2011;14, ED000024.Google Scholar
  90. 90.
    Litwin DE, Cahan MA. Laparoscopic cholecystectomy. Surg Clin N Am. 2008;88:1295–313.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Istituto Clinico Città di Brescia HospitalBresciaItaly

Personalised recommendations