iPCS Cell Modeling of Inherited Cardiac Arrhythmias

  • Rami Shinnawi
  • Lior GepsteinEmail author
Regenerative Medicine and Stem-cell Therapy (S Wu and P Hsieh, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine and Stem-cell Therapy

Opinion statement

The study of inherited cardiac disorders is hampered by the lack of suitable in vitro human cardiac disease models and relevant functional assays. A potential solution to this cell-sourcing challenge may be the recently described human induced pluripotent stem cell (hiPSC) technology. Pioneering studies were successful in establishing patient-specific, hiPSC-derived cardiomyocyte models of the most common inherited cardiac arrhythmogenic disorders, such as the different long QT syndrome subtypes (types 1, 2, 3, 8), overlap syndrome LQTS3/Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia (CPVT) types 1 and 2, and arrhythmogenic right ventricular cardiomyopathy (ARVC). These studies initially demonstrated the ability of the generated hiPSC models to recapitulate the disease processes in the culture dish. More recently, such studies were also able to provide new mechanistic insights into the disease processes, as well as to derive a unique drug-screening platform to test existing and novel therapeutic treatment options in an environment resembling the human physiological milieu. Moreover, initial evidence suggests that such models can help to optimize drug treatment in a personalized manner in the future. Nevertheless, several hurdles still exist for using hiPSC-based models for the aforementioned tasks, such as the hiPSC-derived cardiomyocytes’ relatively immature phenotype, and also the resulting cell heterogeneity. Extensive research work is ongoing to address these challenges, as well as to add new opportunities for the field by utilizing recent advances in gene editing technologies. Here, we discuss the significant findings that hiPSC-based models have provided for each of the inherited cardiac arrhythmia syndromes so far, and the current challenges that this technique is facing.


Disease modeling Induced pluripotent stem cells Long QT syndrome Catecholaminergic polymorphic ventricular tachycardia Inherited cardiac arrhythmias Cardiomyocytes Arrhythmogenic right ventricular cardiomyopathy 



This study was funded in part by the European Research Council Ideas program [ERC-2010-StG-260830-Cardio-iPS], by the Nancy & Stephen Grand Philanthropic Fund, and the Wingarten estate fund.

Compliance with Ethics Guidelines

Conflict of Interest

MSc Rami Shinnawi and Dr. Lior Gepstein each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Remme CA. Transgenic models of cardiac arrhythmias and sudden death. Front Physiol. 2013;4:60. doi: 10.3389/fphys.2013.00060.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Remme CA, Wilde AA, Bezzina CR. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations. Trends Cardiovasc Med. 2008;18(3):78–87. doi: 10.1016/j.tcm.2008.01.002.PubMedCrossRefGoogle Scholar
  3. 3.
    Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med. 2013;3(11). doi: 10.1101/cshperspect.a014027
  4. 4.
    Hoekstra M, Mummery CL, Wilde AA, Bezzina CR, Verkerk AO. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol. 2012;3:346. doi: 10.3389/fphys.2012.00346.PubMedCentralPubMedGoogle Scholar
  5. 5.••
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. Revolutionary study describing that mature somatic cells can be reprogrammed into pluripotent stem cells by introducing a set of transcription factors.PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104(4):e30–41.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation. 2009;120(15):1513–23.PubMedCrossRefGoogle Scholar
  9. 9.••
    Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363(15):1397–409. The first study demonstrating that hiPSC-derived cardiomyocytes from a patient carrying inherited cardiac arrythmia can recapitulate the patient's disease phenotype.PubMedCrossRefGoogle Scholar
  10. 10.
    Egashira T, Yuasa S, Suzuki T, Aizawa Y, Yamakawa H, Matsuhashi T, et al. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res. 2012;95(4):419–29. doi: 10.1093/cvr/cvs206.PubMedCrossRefGoogle Scholar
  11. 11.••
    Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471(7337):225–9. Pioneering study demonstrating that hiPSC-CMs derived from healthy and diseased patients could serve for drug testing ameliorating or aggravating disease phenotype, both at the single and multicellular level.PubMedCrossRefGoogle Scholar
  12. 12.•
    Bellin M, Casini S, Davis RP, D'Aniello C, Haas J, Ward-van Oostwaard D et al. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 2013. doi: 10.1038/emboj.2013.240. Description of the use of an isogenic control line, by correcting the causative mutation, as an optimal control since it eliminates patient-specific genetic background differences between the control and the diseased cells.
  13. 13.
    Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J. 2011;32(8):952–62. doi: 10.1093/eurheartj/ehr073.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lahti AL, Kujala VJ, Chapman H, Koivisto AP, Pekkanen-Mattila M, Kerkela E, et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech. 2012;5(2):220–30. doi: 10.1242/dmm.008409.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Terrenoire C, Wang K, Tung KW, Chung WK, Pass RH, Lu JT, et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol. 2013;141(1):61–72. doi: 10.1085/jgp.201210899.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ma D, Wei H, Zhao Y, Lu J, Li G, Sahib NB, et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol. 2013;168(6):5277–86. doi: 10.1016/j.ijcard.2013.08.015.PubMedCrossRefGoogle Scholar
  17. 17.
    Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471(7337):230–4. doi: 10.1038/nature09855.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Davis RP, Casini S, van den Berg CW, Hoekstra M, Remme CA, Dambrot C, et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation. 2012;125(25):3079–91. doi: 10.1161/CIRCULATIONAHA.111.066092.PubMedCrossRefGoogle Scholar
  19. 19.
    Jung CB, Moretti A. Mederos y Schnitzler M, Iop L, Storch U, Bellin M et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO. Mol Med. 2012;4(3):180–91.Google Scholar
  20. 20.
    Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnaiz-Cot JJ, et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem. 2011;28(4):579–92. doi: 10.1159/000335753.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Itzhaki I, Maizels L, Huber I, Gepstein A, Arbel G, Caspi O, et al. Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol. 2012;60(11):990–1000. doi: 10.1016/j.jacc.2012.02.066.PubMedCrossRefGoogle Scholar
  22. 22.
    Kujala K, Paavola J, Lahti A, Larsson K, Pekkanen-Mattila M, Viitasalo M, et al. Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations. PLoS One. 2012;7(9):e44660. doi: 10.1371/journal.pone.0044660.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Di Pasquale E, Lodola F, Miragoli M, Denegri M, Avelino-Cruz JE, Buonocore M, et al. CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2013;4:e843. doi: 10.1038/cddis.2013.369.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Novak A, Barad L, Zeevi-Levin N, Shick R, Shtrichman R, Lorber A, et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. J Cell Mol Med. 2012;16(3):468–82. doi: 10.1111/j.1582-4934.2011.01476.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Caspi O, Huber I, Gepstein A, Arbel G, Maizels L, Boulos M, et al. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ Cardiovasc Genet. 2013;6(6):557–68. doi: 10.1161/CIRCGENETICS.113.000188.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494(7435):105–10. doi: 10.1038/nature11799.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ma D, Wei H, Lu J, Ho S, Zhang G, Sun X, et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 2013;34:1122–33.Google Scholar
  28. 28.
    Goldenberg I, Moss AJ. Long QT syndrome. J Am Coll Cardiol. 2008;51(24):2291–300. doi: 10.1016/j.jacc.2008.02.068.PubMedCrossRefGoogle Scholar
  29. 29.
    Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005;2(5):507–17. doi: 10.1016/j.hrthm.2005.01.020.PubMedCrossRefGoogle Scholar
  30. 30.
    Hedley PL, Jorgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, et al. The genetic basis of long QT and short QT syndromes: a mutation update. Hum Mutat. 2009;30(11):1486–511. doi: 10.1002/humu.21106.PubMedCrossRefGoogle Scholar
  31. 31.
    Li G, Cheng G, Wu J, Ma S, Sun C. New iPSC for old long QT syndrome modeling: Putting the evidence into perspective. Exp Biol Med (Maywood). 2014;239(2):131–40. doi: 10.1177/1535370213514000.CrossRefGoogle Scholar
  32. 32.
    Swan H, Viitasalo M, Piippo K, Laitinen P, Kontula K, Toivonen L. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol. 1999;34(3):823–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang H, Zou B, Yu H, Moretti A, Wang X, Yan W, et al. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel. Proc Natl Acad Sci U S A. 2012;109(29):11866–71. doi: 10.1073/pnas.1205266109.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Malan D, Friedrichs S, Fleischmann BK, Sasse P. Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circ Res. 2011;109(8):841–7. doi: 10.1161/CIRCRESAHA.111.243139.PubMedCrossRefGoogle Scholar
  35. 35.
    Chandra R, Starmer CF, Grant AO. Multiple effects of KPQ deletion mutation on gating of human cardiac Na + channels expressed in mammalian cells. Am J Physiol. 1998;274(5 Pt 2):H1643–54.PubMedGoogle Scholar
  36. 36.
    Caspi O, Itzhaki I, Kehat I, Gepstein A, Arbel G, Huber I, et al. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev. 2009;18(1):161–72. doi: 10.1089/scd.2007.0280.PubMedCrossRefGoogle Scholar
  37. 37.
    Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013;127(16):1677–91. doi: 10.1161/CIRCULATIONAHA.113.001883.PubMedCrossRefGoogle Scholar
  38. 38.
    Gyorke S. Molecular basis of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2009;6(1):123–9. doi: 10.1016/j.hrthm.2008.09.013.PubMedCrossRefGoogle Scholar
  39. 39.
    Katz G, Arad M, Eldar M. Catecholaminergic polymorphic ventricular tachycardia from bedside to bench and beyond. Curr Probl Cardiol. 2009;34(1):9–43. doi: 10.1016/j.cpcardiol.2008.09.002.PubMedCrossRefGoogle Scholar
  40. 40.
    Eldar M, Pras E, Lahat H. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Cold Spring Harb Symp Quant Biol. 2002;67:333–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69(6):1378–84. doi: 10.1086/324565.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Zhang XH, Haviland S, Wei H, Saric T, Fatima A, Hescheler J, et al. Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects. Cell Calcium. 2013;54(2):57–70. doi: 10.1016/j.ceca.2013.04.004.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Thiene G, Corrado D, Basso C. Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Orphanet J Rare Dis. 2007;2:45. doi: 10.1186/1750-1172-2-45.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Basso C, Bauce B, Corrado D, Thiene G. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2012;9(4):223–33. doi: 10.1038/nrcardio.2011.173.CrossRefGoogle Scholar
  45. 45.
    Cerrone M, Noorman M, Lin X, Chkourko H, Liang FX, van der Nagel R, et al. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc Res. 2012;95(4):460–8. doi: 10.1093/cvr/cvs218.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Gherghiceanu M, Barad L, Novak A, Reiter I, Itskovitz-Eldor J, Binah O, et al. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J Cell Mol Med. 2011;15(11):2539–51. doi: 10.1111/j.1582-4934.2011.01417.x.PubMedCrossRefGoogle Scholar
  47. 47.
    Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22(14):1991–2002. doi: 10.1089/scd.2012.0490.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Lieu DK, Fu JD, Chiamvimonvat N, Tung KC, McNerney GP, Huser T, et al. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol. 2013;6(1):191–201. doi: 10.1161/CIRCEP.111.973420.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Bett GC, Kaplan AD, Lis A, Cimato TR, Tzanakakis ES, Zhou Q et al. Electronic "expression" of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells. Heart Rhythm. 2013. doi:S1547-5271(13)01071-0.Google Scholar
  50. 50.
    Halbach M, Peinkofer G, Baumgartner S, Maass M, Wiedey M, Neef K et al. Electrophysiological integration and action potential properties of transplanted cardiomyocytes derived from induced pluripotent stem cells. Cardiovasc Res. 2013. doi:cvt213.Google Scholar
  51. 51.
    Martins-Taylor K, Xu RH. Concise review: Genomic stability of human induced pluripotent stem cells. Stem Cells. 2012;30(1):22–7. doi: 10.1002/stem.705.PubMedCrossRefGoogle Scholar
  52. 52.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4. doi: 10.1038/nbt.1927.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, et al. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells. 2013;18(4):315–26. doi: 10.1111/gtc.12037.PubMedCrossRefGoogle Scholar
  54. 54.
    Maass K, Lu J, See F, D'Souza S, Fishman GI. Development of a Mouse ESC Reporter Line to Isolate Purkinje-Like Cardiac Conduction System Cells. Heart Rhythm. 2013;10(11):1748. doi: 10.1016/j.hrthm.2013.09.036.CrossRefGoogle Scholar
  55. 55.
    Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109(27):E1848–57. doi: 10.1073/pnas.1200250109.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75. doi: 10.1038/nprot.2012.150.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.The Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Cardiology DepartmentRambam Health Care CampusHaifaIsrael

Personalised recommendations