Updates on the Inherited Cardiac Ion Channelopathies: From Cell to Clinical

  • Jennifer N. A. Silva
  • Jonathan R. Silva
Pediatric and Congenital Heart Disease (GK Singh, Section Editor)

Opinion statement

The inherited channelopathies are a rare, heterogeneous group of diseases with widely variable clinical presentations and courses. Systematic clinical and experimental work has led to identification of disease-causing genetic mutations and their biophysical manifestation. The process by which the knowledge base is developed, from genetic mutation, to cardiac myocyte, to whole heart, and finally to clinical presentation, has dramatically expanded our understanding of these diseases. Most importantly, we can now begin to comprehend how small changes at the genetic level can dramatically influence a patient’s clinical course.


Cardiac channelopathy Sudden cardiac death Pediatrics 



The authors have no acknowledgements.


The authors have no relevant disclosures.


No potential conflicts of interest relevant to this article were reported.

References and Recommended Heading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Aziz PF, Tanel RE, Zelster IJ, Pass RH, Wieand TS, Vetter VL, et al. Congenital long QT syndrome and 2:1 atrioventricular block: an optimistic outcome in the current era. Heart Rhythm J. 2010;7(6):781–5. CrossRefGoogle Scholar
  2. 2.•
    Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7. This is the first population-based study investigating the prevalence of congenital long QT syndrome in Caucasian infants. PubMedCrossRefGoogle Scholar
  3. 3.••
    Itoh H, Shimizu W, Hayashi K, Yamagata K, Sakaguchi T, Ohno S, et al. Long QT syndrome with compound mutations is associated with a more severe phenotype: a Japanese multicenter study. Hear Rhythm. 2010;7(10):1411–8. This multicenter study out of Japan compared genotyped patients with single versus compound mutations and found that those patients with compound mutations were more likely to have severe phenotypes.CrossRefGoogle Scholar
  4. 4.
    Kanters JK, Fanoe S, Larsen LA, Bloch Thomsen PE, Toft E, Christiansen M. T wave morphology analysis distinguishes between KvLQT1 and HERG mutations in long QT syndrome. Hear Rhythm. 2004;1(3):285–92.CrossRefGoogle Scholar
  5. 5.
    Jonathan NJ, Michael JA. The prevalence and diagnostic/prognostic utility of sinus arrhythmia in the evaluation of congenital long QT syndrome. Hear Rhythm. 2010;7(12):1785–9.CrossRefGoogle Scholar
  6. 6.
    Sy RW, Chattha IS, Klein GJ, Gula LJ, Skanes AC, Yee R, et al. Repolarization dynamics during exercise discriminate between LQT1 and LQT2 genotypes. J Cardiovasc Electrophysiol. 2010;21(11):1242–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Hekkala AM, Viitasalo M, Vaananen H, Swan H, Toivonen L. Abnormal repolarization dynamics revealed in exercise test in long QT syndrome mutation carriers with normal resting QT interval. Europace. 2010;12(9):1296–301.PubMedCrossRefGoogle Scholar
  8. 8.
    Clur SA, Chockalingam P, Filippini LH, Widyanti AP, Van Cruijsen M, Blom NA, et al. The role of the epinephrine test in the diagnosis and management of children suspected of having congenital long QT syndrome. Pediatr Cardiol. 2010;31(4):462–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Tester DJ, Will ML, Haglund CM, Ackerman MJ. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006;47(4):764–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Hintsa T, Puttonen S, Toivonen L, Kontula K, Swan H, Keltikangas-Jarvinen L. A history of stressful life events, prolonged mental stress and arrhythmic events in inherited long QT syndrome. Heart. 2010;96(16):1281–6.PubMedCrossRefGoogle Scholar
  11. 11.••
    Kapa S, Tester DJ, Salisbury BA, Harris-Kerr C, Pungliya MS, Alders M, et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation. 2009;120(18):1752–60. This article investigates the value of mutation type as well as the gene/protein region in determining the probability of pathogenicity for mutations. They determine that mutation type, location and ethnic-specific background rates are critical in predicting pathogenicity of mutations. PubMedCrossRefGoogle Scholar
  12. 12.
    Barsheshet A, Goldenberg I, O-Uchi J, Moss AJ, Jons C, Shimizu W, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type-1 long QT syndrome. Circulation. 2012;125(16):1988–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004;109(15):1834–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Hear Rhythm. 2005;2(5):507–17.CrossRefGoogle Scholar
  15. 15.
    Goldenberg I, Moss AJ, Peterson DR, McNitt S, Zareba W, Andrews ML, et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation. 2008;117(17):2184–91.PubMedCrossRefGoogle Scholar
  16. 16.•
    Liu JF, Jons C, Moss AJ, McNitt S, Peterson DR, Qi M, et al. Risk Factors for Recurrent Syncope and Subsequent Fatal or Near-Fatal Events in Children and Adolescents With Long QT Syndrome. J Am Coll Cardiol. 2011;57(8):941–50. This study, generated from the Long QT Syndrome Registry is the first to assess traditional risk markers for cardiac events in the LQTS populations as independent predictors of subsequent syncope. PubMedCrossRefGoogle Scholar
  17. 17.•
    Spazzolini C, Mullally J, Moss AJ, Schwartz PJ, McNitt S, Ouellet G, et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009;54(9):832–7. In this study from the International Long QT Registry demonstrated that patients who had an aborted sudden cardia carrest during the 1st year of life were at very high risk for subsequent cardiac arrests during the next decade of life, and that beta-blockers may not be as effective as in other populations. PubMedCrossRefGoogle Scholar
  18. 18.
    Goldenberg I, Bradley J, Moss A, McNitt S, Polonsky S, Robinson JL, et al. Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J Cardiovasc Electrophysiol. 2010;21(8):893–901.PubMedGoogle Scholar
  19. 19.
    Windle JR, Geletka RC, Moss AJ, Zareba W, Atkins DL. Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:deltaKPQ mutation. Ann Noninvasive Electrocardiol. 2001;6(2):153–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 2007;116(10):1137–44.PubMedCrossRefGoogle Scholar
  21. 21.••
    Blaufox AD, Tristani-Firouzi M, Seslar S, Sanatani S, Trivedi B, Fischbach P, et al. Congenital Long QT 3 in the Pediatric Population. Am J Cardiol. 2012;109(10):1459–65. An international multicenter review of pediatric patients with Long QT Syndrome type 3. It found that these children had severe symptoms and typically had longer QTc intervals which may be shortened with mexiletine. PubMedCrossRefGoogle Scholar
  22. 22.
    Ruan Y, Denegri M, Liu N, Bachetti T, Seregni M, Morotti S, et al. Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ Res. 2010;106(8):1374–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Atallah J, Fynn-Thompson F, Cecchin F, DiBardino DJ, Walsh EP, Berul CI. Video-assisted thoracoscopic cardiac denervation: a potential novel therapeutic option for children with intractable ventricular arrhythmias. Ann Thorac Surg. 2008;86(5):1620–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Collura CA, Johnson JN, Moir C, Ackerman MJ. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Hear Rhythm. 2009;6(6):752–9.CrossRefGoogle Scholar
  25. 25.
    Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94(2):99–102.PubMedCrossRefGoogle Scholar
  26. 26.
    Kobza R, Roos M, Niggli B, Abacherli R, Lupi GA, Frey F, et al. Prevalence of long and short QT in a young population of 41,767 predominantly male Swiss conscripts. Hear Rhythm. 2009;6(5):652–7.CrossRefGoogle Scholar
  27. 27.
    Funada A, Hayashi K, Ino H, Fujino N, Uchiyama K, Sakata K, et al. Assessment of QT intervals and prevalence of short QT syndrome in Japan. Clin Cardiol. 2008;31(6):270–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Anttonen O, Junttila MJ, Rissanen H, Reunanen A, Viitasalo M, Huikuri HV. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation. 2007;116(7):714–20.PubMedCrossRefGoogle Scholar
  29. 29.••
    Patel C, Yan GX, Antzelevitch C. Short QT syndrome: from bench to bedside. Circ Arrhythm Electrophysiol. 2010;3(4):401–8. This is a systematic review of the Short QT syndrome and reviews all relevant data starting at the molecular level and working up to clinical symptoms. PubMedCrossRefGoogle Scholar
  30. 30.••
    Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011;57(7):802–12. This study discussed a novel diagnostic scoring system to facilitate the evaluation of suspected cases of Short QT Syndrome. PubMedCrossRefGoogle Scholar
  31. 31.
    Watanabe H, Makiyama T, Koyama T, Kannankeril PJ, Seto S, Okamura K, et al. High prevalence of early repolarization in short QT syndrome. Hear Rhythm. 2010;7(5):647–52.CrossRefGoogle Scholar
  32. 32.
    Giustetto C, Schimpf R, Mazzanti A, Scrocco C, Maury P, Anttonen O, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58(6):587–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Gaita F, Giustetto C, Bianchi F, Schimpf R, Haissaguerre M, Calo L, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43(8):1494–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Schimpf R, Veltmann C, Giustetto C, Gaita F, Borggrefe M, Wolpert C. In vivo effects of mutant HERG K+ channel inhibition by disopyramide in patients with a short QT-1 syndrome: a pilot study. J Cardiovasc Electrophysiol. 2007;18(11):1157–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Sun Y, Zhang P, Li X, Guo J. Inappropriate ICD discharge due to T-wave oversensing in a patient with short QT syndrome. Pacing Clin Electrophysiol. 2010;33(1):113–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol. 2008;52(19):1567–73.PubMedCrossRefGoogle Scholar
  37. 37.
    London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116(20):2260–8.PubMedCrossRefGoogle Scholar
  38. 38.•
    Amin AS, Klemens CA, Verkerk AO, Meregalli PG, Asghari-Roodsari A, de Bakker JM, et al. Fever-triggered ventricular arrhythmias in Brugada syndrome and type 2 long-QT syndrome. Neth Heart J. 2010;18(3):165–9. This article investigates the risk for ventricular arrhythmias in patients with Brugada Syndrome and Long QT Syndrome, type 2, as well as possible molecular mechanisms. PubMedCrossRefGoogle Scholar
  39. 39.
    Extramiana F, Maison-Blanche P, Badilini F, Messali A, Denjoy I, Leenhardt A. Type 1 electrocardiographic burden is increased in symptomatic patients with Brugada syndrome. J Electrocardiol. 2010;43(5):408–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakano Y, Shimizu W, Ogi H, Suenari K, Oda N, Makita Y, et al. A spontaneous Type 1 electrocardiogram pattern in lead V2 is an independent predictor of ventricular fibrillation in Brugada syndrome. Europace. 2010;12(3):410–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Kostopoulou A, Koutelou M, Theodorakis G, Theodorakos A, Livanis E, Maounis T, et al. Disorders of the autonomic nervous system in patients with Brugada syndrome: a pilot study. J Cardiovasc Electrophysiol. 2010;21(7):773–80.PubMedGoogle Scholar
  42. 42.
    Toh N, Morita H, Nagase S, Taniguchi M, Miura D, Nishii N, et al. Atrial electrophysiological and structural remodeling in high-risk patients with Brugada syndrome: assessment with electrophysiology and echocardiography. Hear Rhythm. 2010;7(2):218–24.CrossRefGoogle Scholar
  43. 43.••
    Priori SG, Gasparini M, Napolitano C, Della Bella P, Della Bella P, Ottonelli AG, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012;59(1):37–45. This is a prospective registry designed to investigate the predictive power of EP study and ventricular tachycardia inducibility in patients with Brugada Syndrome. They found that tachycardia inducibility was not able to identify high-risk patients. PubMedCrossRefGoogle Scholar
  44. 44.
    Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation. 2010;121(5):635–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Sumi S, Maruyama S, Shiga Y, Kodama S, Miyoshi K, Tojou H, et al. High efficacy of disopyramide in the management of ventricular fibrillation storms in a patient with Brugada syndrome. Pacing Clin Electrophysiol. 2010;33(6):e53–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Antzelevitch C. Brugada syndrome. Pacing Clin Electrophysiol. 2006;29(10):1130–59.PubMedCrossRefGoogle Scholar
  47. 47.
    Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106(1):69–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Sy RW, Gollob MH, Klein GJ, Yee R, Skanes AC, Gula LJ, et al. Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia. Hear Rhythm. 2011;8(6):864–71.CrossRefGoogle Scholar
  49. 49.
    Aizawa Y, Komura S, Okada S, Chinushi M, Morita H, Ohe T. Distinct U wave changes in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT). Int Heart J. 2006;47(3):381–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Krahn AD, Gollob M, Yee R, Gula LJ, Skanes AC, Walker BD, et al. Diagnosis of unexplained cardiac arrest: role of adrenaline and procainamide infusion. Circulation. 2005;112(15):2228–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Fagundes A, De Magalhaes LP, Russo M, Xavier E. Pharmacological treatment of electrical storm in cathecolaminergic polymorphic ventricular tachycardia. Pacing Clin Electrophysiol. 2010;33(3):e27–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Rosso R, Kalman JM, Rogowski O, Diamant S, Birger A, Biner S, et al. Calcium channel blockers and beta-blockers versus beta-blockers alone for preventing exercise-induced arrhythmias in catecholaminergic polymorphic ventricular tachycardia. Hear Rhythm. 2007;4(9):1149–54.CrossRefGoogle Scholar
  53. 53.
    Hilliard FA, Steele DS, Laver D, Yang Z, Le Marchand SJ, Chopra N, et al. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J Mol Cell Cardiol. 2010;48(2):293–301.PubMedCrossRefGoogle Scholar
  54. 54.••
    Watanabe H, Chopra N, Laver D, Hwang HS, Davies SS, Roach DE, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009;15(4):380–3. This breakthrough article demonstrated the effectiveness of flecainide, a class 1C antiarrhythmic, in the treatment of CPVT in a mouse model as well as 2 human patients. PubMedCrossRefGoogle Scholar
  55. 55.
    van der Werf C, Kannankeril PJ, Sacher F, Krahn AD, Viskin S, Leenhardt A, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011;57(22):2244–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J. Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Hear Rhythm. 2010;7(8):1122–8.CrossRefGoogle Scholar
  57. 57.••
    Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Hear Rhythm. 2011;8(8):1308–39. This recent consensus document clearly delineates the state of genetic testing for cardiac channelopathies and cardiomyopathies. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PediatricsWashington University School of Medicine/Saint Louis Children’s HospitalSaint LouisUSA
  2. 2.Department of Biomedical EngineeringWashington UniversitySaint LouisUSA

Personalised recommendations