Using Advanced MRI Techniques for Patient Selection Before Acute Stroke Therapy

Cerebrovascular Disease and Stroke

Opinion statement

Results of acute MRI studies may help guide the management of acute stroke. Patients with a malignant MRI pattern may be poor candidates for reperfusion therapies yet may benefit from hemicraniectomy. Preliminary data suggest that patients with a carefully identified diffusion weighted imaging (DWI)/perfusion weighted imaging (PWI) mismatch may benefit from intravenous recombinant tissue plasminogen activator in a 3- to 6-hour time window; however, confirmatory studies with larger sample sizes are required before clinical use of this strategy can be generally recommended. Post hoc analyses of recent studies suggest that PWI techniques that use a threshold to exclude benign oligemia from penumbra and DWI techniques that use apparent diffusion coefficient thresholds to exclude reversible DWI lesions to distinguish the ischemic core from penumbra appear to provide more accurate determinations of the volume of salvageable tissue. New automated software programs are now implementing these techniques to generate quantitative PWI and DWI maps within minutes. Prospective trials are in progress to investigate these new techniques. The results of these studies will further refine the application of MRI to select patients for acute recanalization therapies.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Furlan M, Marchal G, Viader F, et al.: Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 1996, 40:216–226.CrossRefPubMedGoogle Scholar
  2. 2.
    Astrup J, Siesjo BK, Symon L: Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981, 12:723–725.PubMedGoogle Scholar
  3. 3.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group [see comments]: Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995, 333:1581–1587.CrossRefGoogle Scholar
  4. 4.
    Hacke W, Kaste M, Bluhmki E, et al.: Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008, 359:1317–1329.CrossRefPubMedGoogle Scholar
  5. 5.••
    Chalela JA, Kidwell CS, Nentwich LM, et al.: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007, 369:293–298.CrossRefPubMedGoogle Scholar
  6. 6.
    Kidwell CS, Wintermark M: Imaging of intracranial haemorrhage. Lancet Neurol 2008, 7:256–267.CrossRefPubMedGoogle Scholar
  7. 7.
    Moseley ME, Kucharczyk J, Mintorovitch J, et al.: Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 1990, 11:423–429.PubMedGoogle Scholar
  8. 8.
    Hjort N, Christensen S, Solling C, et al.: Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol 2005, 58:462–465.CrossRefPubMedGoogle Scholar
  9. 9.
    Hossmann KA, Fischer M, Bockhorst K, Hoehn-Berlage M: NMR imaging of the apparent diffusion coefficient (ADC) for the evaluation of metabolic suppression and recovery after prolonged cerebral ischemia. J Cereb Blood Flow Metab 1994, 14:723–731.PubMedGoogle Scholar
  10. 10.
    Moseley ME, Cohen Y, Kucharczyk J, et al.: Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990, 176:439–445.PubMedGoogle Scholar
  11. 11.
    Oppenheim C, Samson Y, Manai R, et al.: Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke 2000, 31:2175–2181.PubMedGoogle Scholar
  12. 12.
    Vahedi K, Hofmeijer J, Juettler E, et al.: Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 2007, 6:215–222.CrossRefPubMedGoogle Scholar
  13. 13.•
    Singer OC, Humpich MC, Fiehler J, et al.: Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 2008, 63:52–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Singer OC, Kurre W, Humpich MC, et al.: Risk assessment of symptomatic intracerebral hemorrhage after thrombolysis using DWI-ASPECTS. Stroke 2009, 40:2743–2748.CrossRefPubMedGoogle Scholar
  15. 15.
    Albers GW, Thijs VN, Wechsler L, et al.: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006, 60:508–517.CrossRefPubMedGoogle Scholar
  16. 16.
    Yoo AJ, Verduzco LA, Schaefer PW, et al.: MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke 2009, 40:2046–2054.CrossRefPubMedGoogle Scholar
  17. 17.
    Kidwell CS, Saver JL, Mattiello J, et al.: Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000, 47:462–469.CrossRefPubMedGoogle Scholar
  18. 18.
    Kohno K, Hoehn-Berlage M, Mies G, et al.: Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. Magn Reson Imaging 1995, 13:73–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Guadagno JV, Warburton EA, Jones PS, et al.: How affected is oxygen metabolism in DWI lesions?: a combined acute stroke PET-MR study. Neurology 2006, 67:824–829.CrossRefPubMedGoogle Scholar
  20. 20.
    Guadagno JV, Jones PS, Fryer TD, et al.: Local relationships between restricted water diffusion and oxygen consumption in the ischemic human brain. Stroke 2006, 37:1741–1748.CrossRefPubMedGoogle Scholar
  21. 21.
    Olivot JM, Mlynash M, Thijs VN, et al.: Relationships between cerebral perfusion and reversibility of acute diffusion lesions in DEFUSE: insights from RADAR. Stroke 2009, 40:1692–1697.CrossRefPubMedGoogle Scholar
  22. 22.
    Purushotham A, Mlynash M, Olivot J-M, et al.: Apparent diffusion coefficient distinguishes ischemic core from reversible diffusion lesions [abstract]. Stroke 2009, 40:E116.Google Scholar
  23. 23.
    Christensen S, Mouridsen K, Wu O, et al.: Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 2009, 40:2055–2061.CrossRefPubMedGoogle Scholar
  24. 24.
    Kane I, Carpenter T, Chappell F, et al.: Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke 2007, 38:3158–3164.CrossRefPubMedGoogle Scholar
  25. 25.
    Olivot JM, Mlynash M, Thijs VN, et al.: Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009, 40:469–475.CrossRefPubMedGoogle Scholar
  26. 26.••
    Takasawa M, Jones PS, Guadagno JV, et al.: How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008, 39:870–877.CrossRefPubMedGoogle Scholar
  27. 27.
    Olivot JM, Mlynash M, Zaharchuk G, et al.: Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 2009, 72:1140–1145.CrossRefPubMedGoogle Scholar
  28. 28.
    Ibaraki M, Ito H, Shimosegawa E, et al.: Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 2007, 27:404–413.CrossRefPubMedGoogle Scholar
  29. 29.
    Zaharchuk G, Bammer R, Straka M, et al.: Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: a xenon computed tomographic comparative study. J Magn Reson Imaging 2009, 30:743–752.CrossRefPubMedGoogle Scholar
  30. 30.
    Ma H, Zavala JA, Teoh H, et al.: Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time. J Neurol Neurosurg Psychiatry 2009, 80:991–996.CrossRefPubMedGoogle Scholar
  31. 31.•
    Olivot JM, Mlynash M, Thijs VN, et al.: Geography, structure, and evolution of diffusion and perfusion lesions in Diffusion and perfusion imaging Evaluation For Understanding Stroke Evolution (DEFUSE). Stroke 2009, 40:3245–3251.CrossRefPubMedGoogle Scholar
  32. 32.
    Marks MP, Olivot JM, Kemp S, et al.: Patients with acute stroke treated with intravenous tPA 3–6 hours after stroke onset: correlations between MR angiography findings and perfusion- and diffusion-weighted imaging in the DEFUSE study. Radiology 2008, 249:614–623.CrossRefPubMedGoogle Scholar
  33. 33.
    Kakuda W, Lansberg MG, Thijs VN, et al.: Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab 2008, 28:887–891.CrossRefPubMedGoogle Scholar
  34. 34.
    Olivot JM, Mlynash M, Thijs VN, et al.: Relationships between infarct growth, clinical outcome, and early recanalization in diffusion and perfusion imaging for understanding stroke evolution (DEFUSE). Stroke 2008, 39:2257–2263.CrossRefPubMedGoogle Scholar
  35. 35.••
    Davis SM, Donnan GA, Parsons MW, et al.: Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008, 7:299–309.CrossRefPubMedGoogle Scholar
  36. 36.
    Lansberg MG, Lee J, Christensen S, et al.: DEFUSE and EPITHET: two different studies with one consistent message. Stroke 2010, 41:e42.Google Scholar
  37. 37.••
    Hacke W, Furlan AJ, Al-Rawi Y, et al.: Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009, 8:141–150.CrossRefPubMedGoogle Scholar
  38. 38.
    Lopez-Atalaya JP, Roussel BD, Ali C, et al.: Recombinant Desmodus rotundus salivary plasminogen activator crosses the blood-brain barrier through a low-density lipoprotein receptor-related protein-dependent mechanism without exerting neurotoxic effects. Stroke 2007, 38:1036–1043.CrossRefPubMedGoogle Scholar
  39. 39.
    Hacke W, Albers G, Al-Rawi Y, et al.: The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005, 36:66–73.CrossRefPubMedGoogle Scholar
  40. 40.
    Furlan AJ, Eyding D, Albers GW, et al.: Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006, 37:1227–1231.CrossRefPubMedGoogle Scholar
  41. 41.
    Davis SM, Donnan GA: MR mismatch and thrombolysis: appealing but validation required. Stroke 2910, 2009:40.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Neurology and Neurological Sciences and the Stanford Stroke CenterStanford University Medical CenterPalo AltoUSA

Personalised recommendations