What is the Value of CT Angiography for Patients with Acute Chest Pain?

  • Hector M. Medina
  • Carlos A. Rojas
  • Udo Hoffmann
Coronary Artery Disease

Opinion statement

Coronary CT angiography (CCTA) is an innovative technique to visualize the coronary arteries in patients with suspected coronary artery disease. CCTA has been validated in patients with non acute symptoms. Because of its high negative predictive value in this population, some have advocated using it in patients admitted to the emergency department with chest pain to determine the presence of coronary artery disease and acute coronary syndrome (ACS). With current CCTA protocols, adequate evaluation of the coronary arteries is feasible using radiation doses similar to, and even lower than, those for single-photon emission CT, which is commonly used to stratify these patients. In addition to its unique capability of visualizing the coronary tree in a noninvasive fashion, CCTA evaluates extracardiac pathologic conditions, which are part of the differential diagnosis in patients with chest pain, such as pulmonary embolism and acute aortic syndrome. These conditions, although less common than ACS, are also life threatening and their timely diagnosis and treatment may have a positive impact on survival. Other less frequent conditions, such as coronary artery anomalies, also are easily detected with CCTA. Overall, CCTA has an excellent negative predictive value and sensitivity for ACS in patients presenting with chest pain and simultaneously can aid in the diagnoses of other relevant intrathoracic abnormalities.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Storrow AB, Gibler WB: Chest pain centers: diagnosis of acute coronary syndromes. Ann Emerg Med 2000, 35(5):449–461.PubMedGoogle Scholar
  2. 2.
    Rosamond W, Flegal K, Furie K, et al.: Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2008, 117(4):e25–e146.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson JL, Adams CD, Antman EM, et al.: ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol 2007, 50(7):e1–e157.CrossRefPubMedGoogle Scholar
  4. 4.
    Antman EM, Anbe DT, Armstrong PW, et al.: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction; a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). J Am Coll Cardiol 2004, 44(3):E1–E211.CrossRefPubMedGoogle Scholar
  5. 5.
    Tosteson AN, Goldman L, Udvarhelyi IS, Lee TH: Cost-effectiveness of a coronary care unit versus an intermediate care unit for emergency department patients with chest pain. Circulation 1996, 94(2):143–150.PubMedGoogle Scholar
  6. 6.
    Freas GC: Medicolegal aspects of acute myocardial infarction. Emerg Med Clin North Am 2001, 19(2):511–521.CrossRefPubMedGoogle Scholar
  7. 7.
    Klocke FJ, Baird MG, Lorell BH, et al.: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003, 42(7):1318–1333.CrossRefPubMedGoogle Scholar
  8. 8.
    Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS: Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. J Nucl Cardiol 2002, 9(1):133–134.CrossRefPubMedGoogle Scholar
  9. 9.
    Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 2003, 108(14):1664–1672.CrossRefPubMedGoogle Scholar
  10. 10.
    Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 2003, 108(15):1772–1778.CrossRefPubMedGoogle Scholar
  11. 11.•
    Hoffmann U, Bamberg F, Chae CU, et al.: Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 2009, 53(18):1642–1650.CrossRefPubMedGoogle Scholar
  12. 12.
    Abbara S, Arbab-Zadeh A, Callister TQ, et al.: SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 2009, 3(3):190–204.CrossRefPubMedGoogle Scholar
  13. 13.
    Brodoefel H, Reimann A, Heuschmid M, et al.: Non-invasive coronary angiography with 16-slice spiral computed tomography: image quality in patients with high heart rates. Eur Radiol 2006, 16(7):1434–1441.CrossRefPubMedGoogle Scholar
  14. 14.
    Cademartiri F, Mollet NR, Runza G, et al.: Diagnostic accuracy of multislice computed tomography coronary angiography is improved at low heart rates. Int J Cardiovasc Imaging 2006, 22(1):101–105; discussion 107–109.CrossRefPubMedGoogle Scholar
  15. 15.
    Hoffmann MH, Shi H, Manzke R, et al.: Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 2005, 234(1):86–97.CrossRefPubMedGoogle Scholar
  16. 16.
    Dewey M, Hoffmann H, Hamm B: Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. Rofo 2006, 178(6):600–604.PubMedGoogle Scholar
  17. 17.
    Decramer I, Vanhoenacker PK, Sarno G, et al.: Effects of sublingual nitroglycerin on coronary lumen diameter and number of visualized septal branches on 64-MDCT angiography. AJR Am J Roentgenol 2008, 190(1):219–225.CrossRefPubMedGoogle Scholar
  18. 18.
    Ohnesorge B, Flohr T, Becker C, et al.: Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000, 217(2):564–571.PubMedGoogle Scholar
  19. 19.
    Wang G, Vannier MW: Spatial variation of section sensitivity profile in spiral computed tomography. Med Phys 1994, 21(9):1491–1497.CrossRefPubMedGoogle Scholar
  20. 20.
    Nickoloff EL, Alderson PO: A comparative study of thoracic radiation doses from 64-slice cardiac CT. Br J Radiol 2007, 80(955):537–544.CrossRefPubMedGoogle Scholar
  21. 21.
    Rybicki FJ, Otero HJ, Steigner ML, et al.: Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 2008, 24(5):535–546.CrossRefPubMedGoogle Scholar
  22. 22.
    Hausleiter J, Meyer T, Hadamitzky M, et al.: Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 2006, 113(10):1305–1310.CrossRefPubMedGoogle Scholar
  23. 23.
    Seifarth H, Wienbeck S, Pusken M, et al.: Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 2007, 189(6):1317–1323.CrossRefPubMedGoogle Scholar
  24. 24.
    Vembar M, Walker MJ, Johnson PC: Cardiac imaging using multislice computed tomography scanners: technical considerations. Coron Artery Dis 2006, 17(2):115–123.CrossRefPubMedGoogle Scholar
  25. 25.
    Bastarrika G, Lee YS, Ruzsics B, Schoepf UJ: Coronary CT angiography: applications. Radiol Clin North Am 2009, 47(1):91–107.CrossRefPubMedGoogle Scholar
  26. 26.
    Achenbach S, Giesler T, Ropers D, et al.: Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 2001, 103(21):2535–2538.PubMedGoogle Scholar
  27. 27.
    Hoffmann MH, Shi H, Schmitz BL, et al.: Noninvasive coronary angiography with multislice computed tomography. JAMA 2005, 293(20):2471–2478.CrossRefPubMedGoogle Scholar
  28. 28.
    Nieman K, Oudkerk M, Rensing BJ, et al.: Coronary angiography with multi-slice computed tomography. Lancet 2001, 357(9256):599–603.CrossRefPubMedGoogle Scholar
  29. 29.
    Miller JM, Rochitte CE, Dewey M, et al.: Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008, 359(22):2324–2336.CrossRefPubMedGoogle Scholar
  30. 30.
    Sato Y, Matsumoto N, Ichikawa M, et al.: Efficacy of multislice computed tomography for the detection of acute coronary syndrome in the emergency department. Circ J 2005, 69(9):1047–1051.CrossRefPubMedGoogle Scholar
  31. 31.
    Rubinshtein R, Halon DA, Gaspar T, et al.: Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 2007, 115(13):1762–1768.CrossRefPubMedGoogle Scholar
  32. 32.
    Hollander JE, Litt HI, Chase M, et al.: Computed tomography coronary angiography for rapid disposition of low-risk emergency department patients with chest pain syndromes. Acad Emerg Med 2007, 14(2):112–116.CrossRefPubMedGoogle Scholar
  33. 33.
    Goldstein JA, Gallagher MJ, O’Neill WW, et al.: A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 2007, 49(8):863–871.CrossRefPubMedGoogle Scholar
  34. 34.•
    Abidov A, Gallagher MJ, Chinnaiyan KM, et al.: Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial. J Nucl Cardiol 2009, 16(5):701–713.CrossRefPubMedGoogle Scholar
  35. 35.
    Hadamitzky M, Freissmuth B, Meyer T, et al.: Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. J Am Coll Cardiol 2009, 2(4):404–411.Google Scholar
  36. 36.
    Grundy SM, Cleeman JI, Merz CN, et al.: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110(2):227–239.CrossRefPubMedGoogle Scholar
  37. 37.
    Hachamovitch R, Johnson JR, Hlatky MA, et al.: The study of myocardial perfusion and coronary anatomy imaging roles in CAD (SPARC): design, rationale, and baseline patient characteristics of a prospective, multicenter observational registry comparing PET, SPECT, and CTA for resource utilization and clinical outcomes. J Nucl Cardiol 2009, 16(6):935–948.CrossRefPubMedGoogle Scholar
  38. 38.
    Motoyama S, Sarai M, Harigaya H, et al.: Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009, 54(1):49–57.CrossRefPubMedGoogle Scholar
  39. 39.
    Agatston AS, Janowitz WR, Hildner FJ, et al.: Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990, 15(4):827–832.PubMedCrossRefGoogle Scholar
  40. 40.
    Arad Y, Spadaro LA, Goodman K, et al.: Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000, 36(4):1253–1260.CrossRefPubMedGoogle Scholar
  41. 41.
    Wong ND, Hsu JC, Detrano RC, et al.: Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 2000, 86(5):495–498.CrossRefPubMedGoogle Scholar
  42. 42.
    Raggi P, Callister TQ, Cooil B, et al.: Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 2000, 101(8):850–855.PubMedGoogle Scholar
  43. 43.
    Kondos GT, Hoff JA, Sevrukov A, et al.: Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low-to intermediate-risk adults. Circulation 2003, 107(20):2571–2576.CrossRefPubMedGoogle Scholar
  44. 44.
    Anand DV, Lim E, Hopkins D, et al.: Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 2006, 27(6):713–721.CrossRefPubMedGoogle Scholar
  45. 45.
    Taylor AJ, Bindeman J, Feuerstein I, et al.: Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol 2005, 46(5):807–814.CrossRefPubMedGoogle Scholar
  46. 46.
    Becker A, Leber A, Becker C, Knez A: Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am Heart J 2008, 155(1):154–160.CrossRefPubMedGoogle Scholar
  47. 47.
    Greenland P, Bonow RO, Brundage BH, et al.: ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 2007, 49(3):378–402.CrossRefPubMedGoogle Scholar
  48. 48.
    Budoff MJ, Diamond GA, Raggi P, et al.: Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 2002, 105(15):1791–1796.CrossRefPubMedGoogle Scholar
  49. 49.
    Haberl R, Becker A, Leber A, et al.: Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 2001, 37(2):451–457.CrossRefPubMedGoogle Scholar
  50. 50.
    Knez A, Becker A, Leber A, et al.: Relation of coronary calcium scores by electron beam tomography to obstructive disease in 2,115 symptomatic patients. Am J Cardiol 2004, 93(9):1150–1152.CrossRefPubMedGoogle Scholar
  51. 51.
    Marwan M, Ropers D, Pflederer T, et al.: Clinical characteristics of patients with obstructive coronary lesions in the absence of coronary calcification: an evaluation by coronary CT angiography. Heart 2009, 95(13):1056–1060.CrossRefPubMedGoogle Scholar
  52. 52.
    Garcia MJ, Fuster V: An ounce of prevention with a calcium score scan? J Am Coll Cardiol 2009, 2(6):689–691.Google Scholar
  53. 53.
    Ramanath VS, Oh JK, Sundt TM 3rd, Eagle KA: Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin Proc 2009, 84(5):465–481.CrossRefPubMedGoogle Scholar
  54. 54.
    Mancini MC: Aortic dissection. Available at http://emedicine.medscape.com/article/425118-overview. Accessed December 2009.
  55. 55.
    Hagan PG, Nienaber CA, Isselbacher EM, et al.: The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 2000, 283(7):897–903.CrossRefPubMedGoogle Scholar
  56. 56.
    Moore AG, Eagle KA, Bruckman D, et al.: Choice of computed tomography, transesophageal echocardiography, magnetic resonance imaging, and aortography in acute aortic dissection: International Registry of Acute Aortic Dissection (IRAD). Am J Cardiol 2002, 89(10):1235–1238.CrossRefPubMedGoogle Scholar
  57. 57.
    Silverstein MD, Heit JA, Mohr DN, et al.: Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med 1998, 158(6):585–593.CrossRefPubMedGoogle Scholar
  58. 58.
    Dalen JE, Alpert JS: Natural history of pulmonary embolism. Prog Cardiovasc Dis 1975;17(4):259–270.CrossRefPubMedGoogle Scholar
  59. 59.
    Tapson VF: Acute pulmonary embolism. N Engl J Med 2008, 358(10):1037–1052.CrossRefPubMedGoogle Scholar
  60. 60.
    Fedullo PF, Tapson VF: Clinical practice. The evaluation of suspected pulmonary embolism. N Engl J Med 2003, 349(13):1247–1256.CrossRefPubMedGoogle Scholar
  61. 61.
    Halpern EJ: Triple-rule-out CT angiography for evaluation of acute chest pain and possible acute coronary syndrome. Radiology 2009, 252(2):332–345.CrossRefPubMedGoogle Scholar
  62. 62.
    Takakuwa KM, Halpern EJ, Gingold EL, et al.: Radiation dose in a “triple rule-out” coronary CT angiography protocol of emergency department patients using 64-MDCT: the impact of ECG-based tube current modulation on age, sex, and body mass index. AJR Am J Roentgenol 2009, 192(4):866–872.CrossRefPubMedGoogle Scholar
  63. 63.
    Brenner DJ, Hall EJ: Computed tomography—an increasing source of radiation exposure. N Engl J Med 2007, 357(22):2277–2284.CrossRefPubMedGoogle Scholar
  64. 64.
    Einstein AJ, Henzlova MJ, Rajagopalan S: Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007, 298(3):317–323.CrossRefPubMedGoogle Scholar
  65. 65.
    Thompson RC, Cullom SJ: Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol 2006, 13(1):19–23.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hector M. Medina
    • 1
  • Carlos A. Rojas
    • 1
  • Udo Hoffmann
    • 1
  1. 1.Cardiac MR PET CT Program, Department of Radiology, Division of CardiologyMassachusetts General HospitalBostonUSA

Personalised recommendations