Stem cell therapy for heart failure

Article

Opinion statement

Heart failure (HF) is a chronic disease and a significant global public health concern. Current medical treatment for HF can reduce symptoms but does little to decrease mortality and the need for cardiac transplantation. Novel therapies are needed to further decrease mortality and limit or eliminate the need for cardiac transplantation. Recently, several basic science and clinical trials have suggested that enhancing endogenous regeneration (repair) and exogenous cell therapy might be an approach to improve the function of the failing heart. This article reviews cell therapy clinical trials in patients with chronic HF. The three major subgroups of cells being studied in phase 1 and beginning phase 2 trials are skeletal myoblasts, bone marrow-derived mononuclear cells, and enriched subpopulations of bone marrow and cardiac stem cells. Techniques for stimulating upregulation of endogenous bone marrow progenitor cells in the circulating blood have raised serious safety issues and need to be carefully evaluated. Intracoronary infusion and both transepicardial and transendocardial direct injection of stem cells have been tested clinically and shown to be safe. Skeletal myoblast implantation has led to improved cardiac function, but studies show formation of skeletal muscle in the heart and a lack of electrical integration with surrounding myocardium, a cause for concern. Bone marrow-derived mononuclear cells and enriched subpopulations of cardiac and bone marrow stem cells have been studied extensively in animals and in recent clinical trials, with both controversy and success. There is still much room for improvement, but animal and human studies of enriched subpopulations of cardiac and bone marrow stem cells have shown that these cells are safe, have significant capability for cardiac repair, and offer the best chance for legitimate medical therapy for patients with chronic HF.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Beltrami AP, Barlucchi L, Torella D, et al.: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114:763–776.PubMedCrossRefGoogle Scholar
  2. 2.
    Opie LH, Commerford PJ, Gersh BJ, et al.: Controversies in ventricular remodeling. Lancet 2006, 367:356–367.PubMedCrossRefGoogle Scholar
  3. 3.
    Laflamme MA, Chen KY, Naumova AV, et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007, 25:1015–1024.PubMedCrossRefGoogle Scholar
  4. 4.
    Soonpaa MH, Field LJ: Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 1997, 272:H220–H226.PubMedGoogle Scholar
  5. 5.
    Anversa P, Kajstura J: Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 1998, 83:1–14.PubMedGoogle Scholar
  6. 6.
    Chen X, Wilson RM, Kubo H, et al.: Adolescent feline heart contains a population of small, proliferative, ventricular myocytes with immature physiological properties. Circ Res 2007, 100:536–544.PubMedCrossRefGoogle Scholar
  7. 7.
    Kubo H, Jaleel N, Kumarapeli A, et al.: Increased cardiac myocyte progenitors in failing human hearts. Circulation 2008, 118:649–657.PubMedCrossRefGoogle Scholar
  8. 8.
    Yeh ET, Zhang S, Wu HD, et al.: Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003, 108:2070–2073.PubMedCrossRefGoogle Scholar
  9. 9.
    Kubo H, Berretta RM, Jaleel N, et al.: c-Kit+ bone marrow stem cells differentiate into functional cardiac myocytes. Clin Transl Sci 2009 (in press).Google Scholar
  10. 10.
    Mendez-Ferrer S, Ellison GM, Torella D, et al.: Resident progenitors and bone marrow stem cells in myocardial renewal and repair. Nat Clin Pract Cardiovasc Med 2006, 3(Suppl 1):S83–S89.PubMedCrossRefGoogle Scholar
  11. 11.
    Mauro A: Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961, 9:493–495.PubMedCrossRefGoogle Scholar
  12. 12.
    Zibaitis A, Greentree D, Ma F, et al.: Myocardial regeneration with satellite cell implantation. Transplant Proc 1994, 26:3294.PubMedGoogle Scholar
  13. 13.
    Mills WR, Mal N, Kiedrowski P, et al.: Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol 2007, 42:304–314.PubMedCrossRefGoogle Scholar
  14. 14.
    Menasche P, Hagege AA, Vilquin JT, et al.: Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003, 41:1078–1083.PubMedCrossRefGoogle Scholar
  15. 15.
    Gavira JJ, Herreros J, Perez A, et al.: Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg 2006, 131:799–804.PubMedCrossRefGoogle Scholar
  16. 16.
    Menasche P, Alfieri O, Janssens S, et al.: The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008, 117:1189–1200.PubMedCrossRefGoogle Scholar
  17. 17.
    MG Biotherapeutics: News: Genzyme ends enrollment in phase 2 trial of cardiac cell therapy. Available at http://www.mgbiotherapeutics.com/uscorp/news/mgb_en_p_ci_news_MAGIC.asp. Accessed February 2009.
  18. 18.
    Smits PC, van Geuns RJM, Poldermans D, et al.: Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. J Am Coll Cardiol 2003, 42:2063–2069.PubMedCrossRefGoogle Scholar
  19. 19.
    Siminiak T, Fiszer D, Jerzykowska O, et al.: Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 2005, 26:1188–1195.PubMedCrossRefGoogle Scholar
  20. 20.
    Fernandes S, Amirault JC, Lande G, et al.: Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res 2006, 69:348–358.PubMedCrossRefGoogle Scholar
  21. 21.
    Hagege AA, Carrion C, Menasche P, et al.: Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003, 361:491–492.PubMedCrossRefGoogle Scholar
  22. 22.
    Rota M, Kajstura J, Hosoda T, et al.: Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Nat Acad Sci U S A 2007, 104:17783–17788.CrossRefGoogle Scholar
  23. 23.
    Meyer GP, Wollert KC, Lotz J, et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006, 113:1287–1294.PubMedCrossRefGoogle Scholar
  24. 24.
    Schachinger V, Erbs S, Elsasser A, et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006, 355:1210–1221.PubMedCrossRefGoogle Scholar
  25. 25.
    Tse HF, Kwong YL, Chan JKF, et al.: Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003, 361:47–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Perin EC, Dohmann HFR, Borojevic R, et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003, 107:2294–2302.PubMedCrossRefGoogle Scholar
  27. 27.
    Perin EC, Dohmann HFR, Borojevic R, et al.: Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004, 110(Suppl II):II-213–II-218.CrossRefGoogle Scholar
  28. 28.
    Hendrikx M, Hensen K, Clijsters C, et al.: Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 2006, 114(Suppl I):I-101–I-107.CrossRefGoogle Scholar
  29. 29.
    Assmus B, Honold J, Schachinger V, et al.: Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006, 355:1222–1232.PubMedCrossRefGoogle Scholar
  30. 30.
    Assmus B, Rasokat UF, Honold J, et al.: Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD registry. Circ Res 2007, 100:1234–1241.PubMedCrossRefGoogle Scholar
  31. 31.
    Yao K, Huang R, Qian J, et al.: Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart 2008, 94:1147–1153.PubMedCrossRefGoogle Scholar
  32. 32.
    Gyongyosi M, Lang I, Dettke M, et al.: Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat Clin Pract Cardiovasc Med 2009, 6:70–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Heeschen C, Lehmann R, Honold J, et al.: Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004, 109:1615–1622.PubMedCrossRefGoogle Scholar
  34. 34.
    Dawn B, Stein AB, Urbanek K, et al.: Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A 2005, 102:3766–3771.PubMedCrossRefGoogle Scholar
  35. 35.
    Tillmanns J, Rota M, Hosoda T, et al.: Formation of large coronary arteries by cardiac progenitor cells. Proc Nat Acad Sci U S A 2008, 105:1668–1673.CrossRefGoogle Scholar
  36. 36.
    Patel AN, Geffner L, Vina RF, et al.: Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg 2005, 130:1631–1638.PubMedCrossRefGoogle Scholar
  37. 37.
    Stamm C, Kleine HD, Choi YH, et al.: Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 2007, 133:717–725.PubMedCrossRefGoogle Scholar
  38. 38.
    Manginas A, Goussetis E, Koutelou M, et al.: Pilot study to evaluate the safety and feasibility of intracoronary CD133+ and CD133-CD34+ cell therapy in patients with nonviable anterior myocardial infarction. Catheter Cardiovasc Interv 2007, 69:773–781.PubMedCrossRefGoogle Scholar
  39. 39.
    Kocher AA, Schuster MD, Szabolcs MJ, et al.: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001, 7:430–436.PubMedCrossRefGoogle Scholar
  40. 40.
    Zohlnhofer D, Dibra A, Koppara T, et al.: Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction. J Am Coll Cardiol 2008, 51:1429–1437.PubMedCrossRefGoogle Scholar
  41. 41.
    Sinha S, Poh KK, Sodano D, et al.: Safety and efficacy of peripheral blood progenitor cell mobilization and collection in patients with advanced coronary heart disease. J Clin Apher 2006, 21:116–120.PubMedCrossRefGoogle Scholar
  42. 42.
    Erbs S, Linke A, Adams V, et al.: Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 2005, 97:756–762.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilson RF, Henry TD: Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: double-edged swords. J Am Coll Cardiol 2005, 46:1649–1650.PubMedCrossRefGoogle Scholar
  44. 44.
    Zbinden S, Zbinden R, Meier P, et al.: Safety and efficacy of subcutaneous-only granulocyte-macrophage colony-stimulating factor for collateral growth promotion in patients with coronary artery disease. J Am Coll Cardiol 2005, 46:1636–1642.PubMedCrossRefGoogle Scholar
  45. 45.
    Hill JM, Syed MA, Arai AE, et al.: Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 2005, 46:1643–1648.PubMedCrossRefGoogle Scholar
  46. 46.
    Chachques JC, Herreros J, Trainini J, et al.: Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 2004, 95(Suppl 1):S29–S33.PubMedCrossRefGoogle Scholar
  47. 47.
    Hagege AA, Marolleau JP, Vilquin JT, et al.: Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 2006, 114(Suppl 1):I-108–I-113.CrossRefGoogle Scholar
  48. 48.
    Ince H, Petzsch M, Rehders TC, et al.: Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 2004, 11:695–704.PubMedCrossRefGoogle Scholar
  49. 49.
    Keuthe F, Richartz BM, Kasper C, et al.: Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol 2005, 100:485–491.CrossRefGoogle Scholar
  50. 50.
    Strauer BE, Brehm M, Zeus T, et al.: Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005, 46:1651–1658.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Department of Physiology, Cardiovascular Research CenterTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations