Atherosclerosis regression

  • Justin M. S. Lee
  • Alistair C. Lindsay
  • Ilias Kylintireas
  • Robin P. Choudhury

Opinion statement

Atherosclerosis follows the deposition, retention, and oxidative modification of lipoproteins, especially low-density lipoprotein (LDL) in the walls of large arteries. Uptake of oxidized LDL results in the formation of macrophage foam cells. Proliferation of vascular smooth muscle cells and secretion of extracellular matrix contribute “fibrous” components of the plaque, whereas ongoing accumulation of lipid and inflammatory cell debris forms the necrotic lipid core of the mature atherosclerotic plaque. Both the size and composition of plaques determine the clinical course. In particular, a large lipid core, thin fibrous cap, dense inflammatory cell infiltrate, and proteolytic enzyme activity are associated with adverse risk. Atherosclerosis has often been considered a relentlessly progressive disease. However, new imaging techniques that can quantify plaque burden and provide insights into some of the specific plaque components have allowed regression to be mapped for the first time. In this article, drugs targeting atherosclerosis that have potential or proven benefit in atherosclerosis regression are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 1991, 325:445–453.Google Scholar
  2. 2.
    Mas J-L, Chatellier G, Beyssen B, et al.: Endarterectomy versus stenting in patients with symptomatic severe carotid stenosis. N Engl J Med 2006, 355:1660–1671.PubMedCrossRefGoogle Scholar
  3. 3.
    SPACE Collaborative Group; Ringleb PA, Allenberg J, Brückmann H, et al.: 30 day results from the SPACE trial of stent-protected angioplasty versus carotid endarterectomy in symptomatic patients: a randomised non-inferiority trial. Lancet 2006, 368:1239–1247.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee JM, Choudhury RP: Prospects for atherosclerosis regression through increase in high-density lipoprotein and other emerging therapeutic targets. Heart 2007, 93:559–564.PubMedCrossRefGoogle Scholar
  5. 5.
    Corti R, Fayad ZA, Fuster V, et al.: Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001, 104:249–252.PubMedCrossRefGoogle Scholar
  6. 6.
    Corti R, Fuster V, Fayad ZA, et al.: Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol 2005, 46:106–112.PubMedCrossRefGoogle Scholar
  7. 7.
    Corti R, Fuster V, Fayad ZA, et al.: Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 2002, 106:2884–2887.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee JM, Wiesmann F, Shirodaria C, et al.: Early changes in arterial structure and function following statin initiation: quantification by magnetic resonance imaging. Atherosclerosis 2007 (in press).Google Scholar
  9. 9.
    Fayad ZA, Fuster V: Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann N Y Acad Sci 2000, 902:173–186.PubMedGoogle Scholar
  10. 10.
    Falk E: Why do plaques rupture? Circulation 1992, 86(6 Suppl):III30–III42.PubMedGoogle Scholar
  11. 11.
    Choudhury RP, Fuster V, Badimon JJ, et al.: MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 2002, 22:1065–1074.PubMedCrossRefGoogle Scholar
  12. 12.
    Leber AW, Knez A, White CW, et al.: Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrastenhanced multislice computed tomography. Am J Cardiol 2002, 91:714–718.CrossRefGoogle Scholar
  13. 13.
    Bots ML, Evans GW, Riley WA, Grobbee DE: Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke 2003, 34:2985–2994.PubMedCrossRefGoogle Scholar
  14. 14.
    Rudd JHF, Warburton EA, Fryer TD, et al.: Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002, 105:2708–2711.PubMedCrossRefGoogle Scholar
  15. 15.
    Rudd JH, Myers KS, Bansilal S, et al.: (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007, 50:892–896.PubMedCrossRefGoogle Scholar
  16. 16.
    Tawakol A, Migrino RQ, Bashian GG, et al.: In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006, 48:1818–1824.PubMedCrossRefGoogle Scholar
  17. 17.
    Tahara N, Kai H, Ishibashi M, et al.: Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006, 48:1825–1831.PubMedCrossRefGoogle Scholar
  18. 18.
    Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 2003, 108:1664–1672.PubMedCrossRefGoogle Scholar
  19. 19.
    Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 2003, 108:1772–1778.PubMedCrossRefGoogle Scholar
  20. 20.
    Group WoSCPS: Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS) [see comments]. Circulation 1998, 97:1440–1445.Google Scholar
  21. 21.
    Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344:1383–1389.Google Scholar
  22. 22.
    MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002, 360:7–22.Google Scholar
  23. 23.
    Cannon CP, Braunwald E, McCabe CH, et al.: Comparison of intensive and moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004, 350:1495–1504.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao XQ, Yuan C, Hatsukami TS, et al.: Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol 2001, 21:1623–1629.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao XQ, Phan BA, Chu B, et al.: Testing the hypothesis of atherosclerotic plaque lipid depletion during lipid therapy by magnetic resonance imaging: study design of Carotid Plaque Composition Study. Am Heart J 2007, 154:239–246.PubMedCrossRefGoogle Scholar
  26. 26.
    Choudhury RP, Rong JX, Trogan E, et al.: High-density lipoproteins retard the progression of atherosclerosis and favorably remodel lesions without suppressing indices of inflammation or oxidation. Arterioscler Thromb Vasc Biol 2004, 24:1904–1909.PubMedCrossRefGoogle Scholar
  27. 27.
    Plump AS, Scott CJ, Breslow JL: Human apolipoprotein A–I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 1994, 91:9607–9611.PubMedCrossRefGoogle Scholar
  28. 28.
    Badimon JJ, Badimon L, Fuster V: Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990, 85:1234–1241.PubMedCrossRefGoogle Scholar
  29. 29.
    Rong JX, Li J, Reis ED, et al.: Elevating high-density lipoprotein cholesterol in apolipoprotein e-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 2001, 104:2447–2452.PubMedCrossRefGoogle Scholar
  30. 30.
    Barter PJ, Caulfield M, Eriksson M, et al.: Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007, 357:2109–2122.PubMedCrossRefGoogle Scholar
  31. 31.
    Tall AR, Yvan-Charvet L, Wang N: The failure of torcetrapib: was it the molecule or the mechanism? Arterioscler Thromb Vasc Biol 2007, 27:257–260.PubMedCrossRefGoogle Scholar
  32. 32.
    Capuzzi DM, Guyton JR, Morgan JM, et al.: Efficacy and safety of an extended-release niacin (Niaspan): a long-term study. Am J Cardiol 1998, 82:74U–81U; discussion 85U–86U.PubMedCrossRefGoogle Scholar
  33. 33.
    Knopp RH: Evaluating niacin in its various forms. Am J Cardiol 2000, 86:51L–56L.PubMedCrossRefGoogle Scholar
  34. 34.
    Canner PL, Berge KG, Wenger NK, et al.: Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 1986, 8:1245–1255.PubMedCrossRefGoogle Scholar
  35. 35.
    Brown BG, Zhao XQ, Chait A, et al.: Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001, 345:1583–1592.PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor AJ, Sullenberger LE, Lee HJ, et al.: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 2004, 110:3512–3517.PubMedCrossRefGoogle Scholar
  37. 37.
    Taylor AJ, Lee HJ, Sullenberger LE: The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3. Curr Med Res Opin 2006, 22:2243–2250.PubMedCrossRefGoogle Scholar
  38. 38.
    Brousseau ME, Schaefer EJ, Wolfe ML, et al.: Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004, 350:1505–1515.PubMedCrossRefGoogle Scholar
  39. 39.
    Brousseau ME, Diffenderfer MR, Millar JS, et al.: Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A–I metabolism, and fecal sterol excretion. Arterioscler Thromb Vasc Biol 2005, 25:1057–1064.PubMedCrossRefGoogle Scholar
  40. 40.
    Nissen SE, Tardif JC, Nicholls SJ, et al.: Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007, 356:1304–1316.PubMedCrossRefGoogle Scholar
  41. 41.
    Bots ML, Visseren FL, Evans GW, et al.: Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 2007, 370:153–160.PubMedCrossRefGoogle Scholar
  42. 42.
    Shah PK, Nilsson J, Kaul S, et al.: Effects of recombinant apolipoprotein A–I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation 1998, 97:780–785.PubMedGoogle Scholar
  43. 43.
    Nissen SE, Tsunoda T, Tuzcu EM, et al.: Effect of recombinant ApoA–I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003, 290:2292–2300.PubMedCrossRefGoogle Scholar
  44. 44.
    Navab M, Anantharamaiah GM, Reddy ST, et al.: Oral small peptides render hdl antiinflammatory in mice and monkeys and reduce atherosclerosis in ApoE null mice. Circ Res. 2005; 97:524–532.PubMedCrossRefGoogle Scholar
  45. 45.
    Choudhury RP, Lee JM, Greaves DR: Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med 2005, 2:309–315.PubMedCrossRefGoogle Scholar
  46. 46.
    Li AC, Binder CJ, Gutierrez A, et al.: Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 2004, 114:1564–1576.PubMedGoogle Scholar
  47. 47.
    Dormandy JA, Charbonnel B, Eckland DJ, et al.: Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005, 366:1279–1289.PubMedCrossRefGoogle Scholar
  48. 48.
    Kusunoki J, Hansoty DK, Aragane K, et al.: Acyl-coa: cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein e-deficient mice. Circulation 2001, 103:2604–2609.PubMedGoogle Scholar
  49. 49.
    Tardif JC, Gregoire J, L’Allier PL, et al.: Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 2004, 110:3372–3377.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Justin M. S. Lee
  • Alistair C. Lindsay
  • Ilias Kylintireas
  • Robin P. Choudhury
    • 1
  1. 1.Department of Cardiovascular MedicineLevel 5 John Radcliffe HospitalOxfordUK

Personalised recommendations