SCD in patients with cardiomyopathy: Use of microvolt T-wave alternans and other noninvasive tests for risk stratification and prevention of SCD

Article
  • 40 Downloads

Opinion statement

Based on current guidelines, most electrophysiologists today are implanting cardioverter-defibrillators (ICDs) using a low left ventricular ejection fraction alone as the sole stratifier for the risk of sudden cardiac death. However, left ventricular ejection fraction is a better marker of total mortality than sudden death. As a result, this strategy is flawed because it exposes many patients to the risk and cost of ICD therapy without its benefits. Primary prevention trials based on this strategy show that the rate of appropriate ICD shocks is only 5% to 10% per year. We believe that the effectiveness of ICD therapy can be improved by the use, in addition to ejection fraction, of one or more of the noninvasive tests, which are reviewed in this article. Such tests are more adequate to evaluate the arrhythmogenic substrate of the patient than the left ventricular ejection fraction alone. Whether any of these tests can help us identify the patients at the lowest risk of sudden death, who could safely avoid ICD implant, remains to be determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    European Heart Rhythm Association, Heart Rhythm Society, Zipes DP, et al.: ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J Am Coll Cardiol 2006, 48:e247–e346.PubMedCrossRefGoogle Scholar
  2. 2.
    U.S. Census Bureau: Statistical Abstract of the United States: 2001. http://www.census.gov/prod/2002pubs/01statab/vitstat.pdf.
  3. 3.
    American Cancer Society, Inc., Surveillance Research: Cancer Facts and Figures 2001. http://www.cancer.org/downloads/STT/F&F2001.pdf.
  4. 4.
    American Heart Association: 2002 Heart and Stroke Statistical Update. http://www.americanheart.org/downloadable/heart/1166711577754HS_StatsInsideText.pdf.
  5. 5.
    Zheng ZJ, Croft JB, Giles WH, Mensah GA: Sudden cardiac death in the United States, 1989 to 1998. Circulation 2001, 104:2158–2163.PubMedCrossRefGoogle Scholar
  6. 6.
    Moss AJ, Hall WJ, Cannom DS, et al.: Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 1996, 335:1933–1940.PubMedCrossRefGoogle Scholar
  7. 7.
    Moss AJ, Zareba W, Hall WJ, et al.: Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002, 346:877–883.PubMedCrossRefGoogle Scholar
  8. 8.
    Kadish A, Dyer A, Daubert JP, et al.: Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med 2004, 350:2151–2158.PubMedCrossRefGoogle Scholar
  9. 9.
    Bristow MR, Saxon LA, Boehmer J, et al.: Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004, 350:2140–2150.PubMedCrossRefGoogle Scholar
  10. 10.
    Buxton AE, Lee KL, Fisher JD, et al.: A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med 1999, 341:1882–1890.PubMedCrossRefGoogle Scholar
  11. 11.
    Bardy GH, Lee KL, Mark DB, et al.: Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005, 352:225–237.PubMedCrossRefGoogle Scholar
  12. 12.
    Bigger JT Jr: Prophylactic use of implanted cardiac defibrillators in patients at high risk for ventricular arrhythmias after coronary-artery bypass graft surgery. N Engl J Med 1997, 337:1569–1575.PubMedCrossRefGoogle Scholar
  13. 13.
    Salukhe TV, Dimopoulos K, Sutton R, et al.: Life-years gained from defibrillator implantation: markedly nonlinear increase during 3 years of follow-up and its implications. Circulation 2004, 109:1848–1853.PubMedCrossRefGoogle Scholar
  14. 14.
    Sanders GD, Hlatky MA, Owens DK: Cost-effectiveness of implantable cardioverter-defibrillators. N Engl J Med 2005, 353:1471–1480.PubMedCrossRefGoogle Scholar
  15. 15.
    Kleiger RE, Miller JP, Bigger JT, et al.: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987, 59:256–262.PubMedCrossRefGoogle Scholar
  16. 16.
    Odemuyiwa O, Malik M, Farrell T, et al.: Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol 1991, 68:434–439.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartikainen JE, Malik M, Staunton A, et al.: Distinction between arrhythmic and nonarrhythmic death after acute myocardial infarction based on heart rate variability, signalaveraged electrocardiogram, ventricular arrhythmias and left ventricular ejection fraction. J Am Coll Cardiol 1996, 28:296–304.PubMedCrossRefGoogle Scholar
  18. 18.
    Ponikowski P, Anker SD, Chua TP, et al.: Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1997, 79:1645–1650.PubMedCrossRefGoogle Scholar
  19. 19.
    Bilchick KC, Fetics B, Djoukeng R, et al.: Prognostic value of heart rate variability in chronic congestive heart failure. Veterans Affairs Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure. Am J Cardiol 2002, 90:24–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Fauchier L, Babuty D, Cosnay P, et al.: Heart rate variability in idiopathic dilated cardiomyopathy: characteristics and prognostic value. J Am Coll Cardiol 1997, 30:1009–1014.PubMedCrossRefGoogle Scholar
  21. 21.
    Sandercock GR, Brodie DA: The role of heart rate variability in prognosis for different modes of death in chronic heart failure. Pacing Clin Electrophysiol 2006, 29:892–904.PubMedCrossRefGoogle Scholar
  22. 22.
    Rashba EJ, Estes M, Wang, P, et al.: Preserved heart rate variability identifies low-risk patients with non-ischemic dilated cardiomyopathy: results from the definite trial. Heart Rhythm 2006, 3:281–286.PubMedCrossRefGoogle Scholar
  23. 23.
    Hohnloser SH, Kuck KH, Dorian P, et al.: Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med 2004, 351:2481–2488.PubMedCrossRefGoogle Scholar
  24. 24.
    Gardner PI, Ursell PC, Fenoglio JJ, Wit AL: Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 1985, 72:596–611.PubMedGoogle Scholar
  25. 25.
    Simson MB: Use of signals in the terminal QRS complex to identify patients with recurrent ventricular tachycardia after myocardial infarction. Circulation 1981, 64:235–242.PubMedGoogle Scholar
  26. 26.
    Signal-averaged electrocardiography [no authors listed]. J Am Coll Cardiol 1996, 27:238–249.Google Scholar
  27. 27.
    Lindsay BD, Markham J, Schechtman KB, et al.: Identification of patients with sustained ventricular tachycardia by frequency analysis of signal-averaged electrocardiograms despite the presence of bundle branch block. Circulation 1988, 77:122–130.PubMedGoogle Scholar
  28. 28.
    Bailey JJ, Berson AS, Handelsman H, Hodges M: Utility of current risk stratification tests for predicting major arrhythmic events after myocardial infarction. J Am Coll Cardiol 2001, 38:1902–1911.PubMedCrossRefGoogle Scholar
  29. 29.
    Gomes JA, Caine ME, Buxton AE: Prediction of long-term outcomes by signal-averaged electrocardiography in patients with unsustained ventricular tachycardia, coronary artery disease, and left ventricular dysfunction. Circulation 2001, 104:436–441.PubMedCrossRefGoogle Scholar
  30. 30.
    Mancini DM, Wong KL, Simpson MB: Prognostic value of an abnormal signal-averaged electrocardiogram in patients with nonischemic congestive cardiomyopathy. Circulation 1993, 87:1083–1092.PubMedGoogle Scholar
  31. 31.
    Grimm W, Christ M, Bach J, et al.: Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: resutls of the Marburg Cardiomyopathy Study. Circulation 2003, 108:2883–2891.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt G, Malik M, Barthel P, et al.: Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 1999, 353:1390–1396.PubMedCrossRefGoogle Scholar
  33. 33.
    Voss A, Baier V, Schumann A, et al.: Postextrasystolic regulation patterns of blood pressure and heart rate in patients with idiopathic dilated cardiomyopathy. J Physiol 2002, 538:271–278.PubMedCrossRefGoogle Scholar
  34. 34.
    Barthel P, Schneider R, Bauer A, et al.: Risk stratification after acute myocardial infarction by heart rate turbulence. Circulation 2003, 108:1221–1226.PubMedCrossRefGoogle Scholar
  35. 35.
    Ghuran A, Reid F, La Rovere MT, et al.: Heart rate turbulence-based predictors of fatal and nonfatal cardiac arrest. The Autonomic Tone and Reflexes After Myocardial Infarction substudy. Am J Cardiol 2002, 89:184–190.PubMedCrossRefGoogle Scholar
  36. 36.
    Makikallio TH, Barthel P, Schneider R, et al.: Prediction of sudden cardiac death after acute myocardial infarction: role of Holter monitoring in the modern treatment era. Eur Heart J 2005, 26:762–769.PubMedCrossRefGoogle Scholar
  37. 37.
    Francis J, Watanabe MA, Schmidt G: Heart rate turbulence: a new predictor for risk of sudden cardiac death. Ann Noninvasive Electrocardiol 2005, 10:102–109.PubMedCrossRefGoogle Scholar
  38. 38.
    Hering HE: Experimentelle studien an Saugertherien uber das elektrocardiogramm. II. Mittheilung. Z Exp Pathol Ther 1910, 7:363–378.CrossRefGoogle Scholar
  39. 39.
    Lewis T: Notes upon alternation of the heart. Q J Med 1910, 4:141–144.Google Scholar
  40. 40.
    Smith JM, Clancy EA, Valeri R, et al.: Electrical alternans and cardiac electrical instability. Circulation 1988, 77:110–121.PubMedGoogle Scholar
  41. 41.
    Pastore JM, Girouard SD, Laurita KR, et al.: Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 1999, 99:1385–1394.PubMedGoogle Scholar
  42. 42.
    Bloomfield DM, Hohnloser SH, Cohen RJ: Interpretation and classification of microvolt T wave alternans tests. J Cardiovasc Electrophysiol 2002, 13:502–512.PubMedCrossRefGoogle Scholar
  43. 43.
    Kavesh NG, Shorofsky SR, Sarang SE, et al.: Effect of heart rate on T wave alternans. J Cardiovasc Electrophysiol 1998, 9:703–708.PubMedCrossRefGoogle Scholar
  44. 44.
    Tanno K, Ryu S, Watanabe N, et al.: Microvolt T-wave alternans as a predictor of ventricular tachyarrhythmias: a prospective study using atrial pacing. Circulation 2004, 109:1854–1858.PubMedCrossRefGoogle Scholar
  45. 45.
    Kaufman ES, Bloomfield DM, Steinman RC, et al.: “Indeterminate” microvolt T-wave alternans tests predict high risk of death or sustained ventricular arrhythmias in patients with left ventricular dysfunction. J Am Coll Cardiol 2006, 48:1399–1404.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenbaum DS, Jackson LE, Smith JM, et al.: Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 1994, 330:235–241.PubMedCrossRefGoogle Scholar
  47. 47.
    Bloomfield DM, Bigger JT, Steinman RC, et al.: Microvolt T-wave alternans and the risk of death or sustained ventricular arrhythmias in patients with left ventricular dysfunction. J Am Coll Cardiol 2006, 47:456–463.PubMedCrossRefGoogle Scholar
  48. 48.
    Klingenheben T, Zabel M, D’Agostino RB, et al.: Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet 2000, 356:651–652.PubMedCrossRefGoogle Scholar
  49. 49.
    Gehi AK, Stein RH, Metz LD, Gomes JA: Microvolt T-wave alternans for the risk stratification of ventricular tachyarrhythmic events: a meta-analysis. J Am Coll Cardiol 2005, 46:75–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Bloomfield DM, Steinman RC, Namerow PB, et al.: Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation 2004, 110:1885–1889.PubMedCrossRefGoogle Scholar
  51. 51.
    Chow T, Kereiakes DJ, Bartone C, et al.: Prognostic utility of microvolt T-wave alternans in risk stratification of patients with ischemic cardiomyopathy. J Am Coll Cardiol 2006, 47:1820–1827.PubMedCrossRefGoogle Scholar
  52. 52.
    Gold MR, Bloomfield DM, Anderson KP, et al.: A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol 2000, 36:2247–2253.PubMedCrossRefGoogle Scholar
  53. 53.
    Hohnloser SH, Klingenheben T, Bloomfield D, et al.: Usefulness of microvolt T-wave alternans for prediction of ventricular tachyarrhythmic events in patients with dilated cardiomyopathy: results from a prospective observational study. J Am Coll Cardiol 2003, 41:2220–2224.PubMedCrossRefGoogle Scholar
  54. 54.
    Rashba EJ, Osman AF, Macmurdy K, et al.: Enhanced detection of arrhythmia vulnerability using T wave alternans, left ventricular ejection fraction, and programmed ventricular stimulation: a prospective study in subjects with chronic ischemic heart disease. J Cardiovasc Electrophysiol 2004, 15:170–176.PubMedCrossRefGoogle Scholar
  55. 55.
    Ikeda T, Sakata T, Takami M, et al.: Combined Assessment of T Wave Alternans and Late Potentials Used to Predict Arrhythmic Events After Myocardial Infarction. J Am Coll Cardiol 2000, 35:722–730.PubMedCrossRefGoogle Scholar
  56. 56.
    Costantini O, Rosenbaum DS, Hohnloser SH, et al.: The alternans before cardioverter defibrillator (ABCD) trial: a noninvasive strategy for primary prevention of sudden cardiac death using T-wave alternans [abstract]. Circulation 2006, 114:2426.Google Scholar
  57. 57.
    Costantini O, Bigger JT, Bloomfield DM, et al.: Patients with non-ischemic cardiomyopathy and a negative t wave alternans stress test are at a low risk of death or ventricular tachyarrhythmias [abstract]. Circulation 2004, 110:667.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Arrhythmia Prevention Center, MetroHealth CampusCase Western Reserve UniversityClevelandUSA

Personalised recommendations