Advertisement

Current Urology Reports

, 20:68 | Cite as

Renal Cell Carcinoma: the Oncologist Asks, Can PSMA PET/CT Answer?

  • Chiara PozzessereEmail author
  • Maria Bassanelli
  • Anna Ceribelli
  • Sazan Rasul
  • Shuren Li
  • John O. Prior
  • Francesco Cicone
New Imaging Techniques (S Rais-Bahrami and K Porter, Section Editors)
  • 79 Downloads
Part of the following topical collections:
  1. Topical Collection on New Imaging Techniques

Abstract

Purpose of Review

To critically review the potential clinical applications of prostate-specific membrane antigen (PSMA) radioactive ligands in renal cell carcinoma (RCC).

Recent Findings

Radioactive probes targeting PSMA hold promise in several malignancies in addition to prostate cancer, owing to the expression of PSMA by tumor neovasculature. The majority of clear cell RCCs (ccRCC), the most malignant RCC subtype, express PSMA on tumor-associated neovasculature. The endothelium of less aggressive RCC subtypes is PSMA positive in a lower, but still significant percentage of cases. PSMA might therefore represent an interesting theragnostic target in RCC.

Summary

The preliminary data available suggest a potential role for PSMA-targeting radiopharmaceuticals in complementing conventional imaging for staging ccRCC patients at risk of nodal involvement and oligometastatic disease. Additional applications of PSMA imaging may be the selection and the response assessment of patients receiving anti-angiogenic treatments. The effectiveness of PSMA-targeting radionuclide therapy should also be investigated.

Keywords

Renal cell carcinoma Positron-emission tomography Prostate-specific membrane antigen Diagnostic imaging Response assessment Neoangiogenesis 

Notes

Compliance with Ethical Standards

Conflict of Interest

Chiara Pozzessere, Maria Bassanelli, Anna Ceribelli, Sazan Rasul, Shuren Li, John O. Prior, and Francesco Cicone each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu Y. The place of FDG PET/CT in renal cell carcinoma: value and limitations. Front Oncol. 2016;6:201.PubMedPubMedCentralGoogle Scholar
  3. 3.
    O’Keefe DS, Bacich DJ, Huang SS, Heston WDW. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med Off Publ Soc Nucl Med. 2018;59(7):1007–13.Google Scholar
  4. 4.
    Cancer statistics, 2018 - Siegel - 2018 - CA: A Cancer Journal for Clinicians - Wiley Online Library [Internet]. [cited 2019 May 16]. Available from: https://onlinelibrary.wiley.com/doi/full/10.3322/caac.21442
  5. 5.
    Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183(2):131–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Gnarra JR, Duan DR, Weng Y, Humphrey JS, Chen DY, Lee S, et al. Molecular cloning of the von Hippel-Lindau tumor suppressor gene and its role in renal carcinoma. Biochim Biophys Acta. 1996;1242(3):201–10.PubMedGoogle Scholar
  7. 7.
    Wagener N, Edelmann D, Benner A, Zigeuner R, Borgmann H, Wolff I, et al. Outcome of papillary versus clear cell renal cell carcinoma varies significantly in non-metastatic disease. PLoS One. 2017;12(9):e0184173.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cancer Genome Atlas Research Network, Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374(2):135–45.CrossRefGoogle Scholar
  9. 9.
    SEER cancer statistics review, 1975-2015 [Internet]. SEER. [cited 2019 May 16]. Available from: https://seer.cancer.gov/csr/1975_2015/index.html
  10. 10.
    Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387(10021):894–906.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bianchi M, Sun M, Jeldres C, Shariat SF, Trinh Q-D, Briganti A, et al. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol Off J Eur Soc Med Oncol. 2012;23(4):973–80.CrossRefGoogle Scholar
  12. 12.
    Ramamurthy NK, Moosavi B, McInnes MDF, Flood TA, Schieda N. Multiparametric MRI of solid renal masses: pearls and pitfalls. Clin Radiol. 2015;70(3):304–16.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bonekamp S, Corona-Villalobos CP, Kamel IR. Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging. 2012;35(2):257–79.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lindenberg L, Mena E, Choyke PL, Bouchelouche K. PET imaging in renal cancer. Curr Opin Oncol. 2019;31(3):216–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen R, Zhou X, Huang G, Liu J. Fructose 1,6-bisphosphatase 1 expression reduces 18F-FDG uptake in clear cell renal cell carcinoma. Contrast Media Mol Imaging. 2019;2019:9463926.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    •• Carter RE, Feldman AR, Coyle JT. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA. 1996;93(2):749–53 This study demonstrated that PSMA is a hydrolase with neuropeptidase activity in the mammalian brain.PubMedCrossRefGoogle Scholar
  17. 17.
    Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, et al. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res Off J Am Assoc Cancer Res. 1996;2(9):1445–51.Google Scholar
  18. 18.
    Bařinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012;19(6):856–70.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wright GL, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol. 1995;1(1):18–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59(13):3192–8.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Chang SS, O’Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res Off J Am Assoc Cancer Res. 1999;5(10):2674–81.Google Scholar
  22. 22.
    •• Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57(17):3629–34 This is the first demonstration that PSMA is expressed by the vascular endothelium of a wide variety of tumors, but not by the normal vascular endothelium, suggesting its potential role as a neoplastic target.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Conway RE, Petrovic N, Li Z, Heston W, Wu D, Shapiro LH. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol. 2006;26(14):5310–24.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    • Conway RE, Joiner K, Patterson A, Bourgeois D, Rampp R, Hannah BC, et al. Prostate specific membrane antigen produces pro-angiogenic laminin peptides downstream of matrix metalloprotease-2. Angiogenesis. 2013;16(4):847–60 This paper elucidates the mechanism by which PSMA promotes angiogenesis.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Conway RE, Rojas C, Alt J, Nováková Z, Richardson SM, Rodrick TC, et al. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 2016;19(4):487–500.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Salas Fragomeni RA, Amir T, Sheikhbahaei S, Harvey SC, Javadi MS, Solnes LB, et al. Imaging of nonprostate cancers using PSMA-targeted radiotracers: rationale, current state of the field, and a call to arms. J Nucl Med Off Publ Soc Nucl Med. 2018;59(6):871–7.Google Scholar
  27. 27.
    Backhaus P, Noto B, Avramovic N, Grubert LS, Huss S, Bögemann M, et al. Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives. Eur J Nucl Med Mol Imaging. 2018;45(5):860–77.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Afshar-Oromieh A, Babich JW, Kratochwil C, Giesel FL, Eisenhut M, Kopka K, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med Off Publ Soc Nucl Med. 2016;57(Suppl 3):79S–89S.Google Scholar
  29. 29.
    Pillai MRA, Nanabala R, Joy A, Sasikumar A, Russ Knapp FF. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol. 2016;43(11):692–720.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Eder M, Schäfer M, Bauder-Wüst U, Hull W-E, Wängler C, Mier W, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23(4):688–97.CrossRefGoogle Scholar
  31. 31.
    Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(10):3036–43.CrossRefGoogle Scholar
  32. 32.
    Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(24):7645–53.CrossRefGoogle Scholar
  33. 33.
    Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med Off Publ Soc Nucl Med. 2015;56(6):914–20.Google Scholar
  34. 34.
    Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med Off Publ Soc Nucl Med. 2015;56(8):1169–76.Google Scholar
  35. 35.
    Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res Off J Am Assoc Cancer Res. 1997;3(1):81–5.Google Scholar
  36. 36.
    Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM, Wang CY, et al. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg. 2006;30(4):628–36.PubMedCrossRefGoogle Scholar
  37. 37.
    • Baccala A, Sercia L, Li J, Heston W, Zhou M. Expression of prostate-specific membrane antigen in tumor-associated neovasculature of renal neoplasms. Urology. 2007;70(2):385–90 This study provides evidence of PSMA expression by the neovasculature of some RCC subtypes, in particular in ccRCC.PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Ahmadie HA, Olgac S, Gregor PD, Tickoo SK, Fine SW, Kondagunta GV, et al. Expression of prostate-specific membrane antigen in renal cortical tumors. Mod Pathol Off J U S Can Acad Pathol Inc. 2008;21(6):727–32.Google Scholar
  39. 39.
    •• Spatz S, Tolkach Y, Jung K, Stephan C, Busch J, Ralla B, et al. Comprehensive evaluation of prostate specific membrane antigen expression in the vasculature of renal tumors: implications for imaging studies and prognostic role. J Urol. 2018;199(2):370–7 This immunochemistry study correlates the presence and the density of PSMA staining with clinicopathologic features of 257 RCC patients, reporting a significant association between PSMA expression and overall survival.PubMedCrossRefGoogle Scholar
  40. 40.
    Sawicki LM, Buchbender C, Boos J, Giessing M, Ermert J, Antke C, et al. Diagnostic potential of PET/CT using a 68Ga-labelled prostate-specific membrane antigen ligand in whole-body staging of renal cell carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2017;44(1):102–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Hindman N, Ngo L, Genega EM, Melamed J, Wei J, Braza JM, et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology. 2012;265(2):468–77.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Pierorazio PM, Hyams ES, Tsai S, Feng Z, Trock BJ, Mullins JK, et al. Multiphasic enhancement patterns of small renal masses (≤4 cm) on preoperative computed tomography: utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma. Urology. 2013;81(6):1265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mazzei FG, Mazzei MA, Cioffi Squitieri N, Pozzessere C, Righi L, Cirigliano A, et al. CT perfusion in the characterisation of renal lesions: an added value to multiphasic CT. Biomed Res Int. 2014;2014:135013.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hötker AM, Mazaheri Y, Wibmer A, Zheng J, Moskowitz CS, Tickoo SK, et al. Use of DWI in the differentiation of renal cortical tumors. AJR Am J Roentgenol. 2016;206(1):100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Johnson DC, Josip V, Smith Angela B, Anne-Marie M, Wheeler Stephanie B, Tzy-Mey K, et al. Preoperatively misclassified, surgically removed benign renal masses: a systematic review of surgical series and United States population level burden estimate. J Urol. 2015;193(1):30–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Brufau BP, Cerqueda CS, Villalba LB, Izquierdo RS, González BM, Molina CN. Metastatic renal cell carcinoma: radiologic findings and assessment of response to targeted antiangiogenic therapy by using multidetector CT. Radiogr Rev Publ Radiol Soc N Am Inc. 2013;33(6):1691–716.Google Scholar
  47. 47.
    Ali O, Fishman EK, Kawamoto S. Recurrent renal cell carcinoma following nephrectomy and ablation therapy: radiology perspective. Eur J Radiol. 2018;107:134–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Dunnick NR. Renal cell carcinoma: staging and surveillance. Abdom Radiol N Y. 2016;41(6):1079–85.CrossRefGoogle Scholar
  49. 49.
    Capitanio U, Becker F, Blute ML, Mulders P, Patard J-J, Russo P, et al. Lymph node dissection in renal cell carcinoma. Eur Urol. 2011;60(6):1212–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Blom JHM, van Poppel H, Maréchal JM, Jacqmin D, Schröder FH, de Prijck L, et al. Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. Eur Urol. 2009;55(1):28–34.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    • Rowe SP, Gorin MA, Hammers HJ, Som Javadi M, Hawasli H, Szabo Z, et al. Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann Nucl Med. 2015;29(10):877–82 This study suggests higher performances of 18 F-DCFPyL in the assessment of metastatic RCC compared with conventional imaging.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    • Rhee H, Blazak J, Tham CM, Ng KL, Shepherd B, Lawson M, et al. Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 2016;6(1):76 This pathologically confirmed study showed higher sensitivity of 68 Ga-PSMA-11 PET/CT in detecting metastases from RCC, compared with conventional imaging.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Einspieler I, Tauber R, Maurer T, Schwaiger M, Eiber M. 68Ga prostate-specific membrane antigen uptake in renal cell cancer lymph node metastases. Clin Nucl Med. 2016;41(5):e261–2.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Thyavihally YB, Mahantshetty U, Chamarajanagar RS, Raibhattanavar SG, Tongaonkar HB. Management of renal cell carcinoma with solitary metastasis. World J Surg Oncol. 2005;3:48.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ruatta F, Derosa L, Escudier B, Colomba E, Guida A, Baciarello G, et al. Prognosis of renal cell carcinoma with bone metastases: experience from a large cancer centre. Eur J Cancer Oxf Engl 1990. 2019;107:79–85.Google Scholar
  56. 56.
    Woodward E, Jagdev S, McParland L, Clark K, Gregory W, Newsham A, et al. Skeletal complications and survival in renal cancer patients with bone metastases. Bone. 2011;48(1):160–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jung ST, Ghert MA, Harrelson JM, Scully SP. Treatment of osseous metastases in patients with renal cell carcinoma. Clin Orthop. 2003;409:223–31.CrossRefGoogle Scholar
  58. 58.
    Rowe SP, Gorin MA, Hammers HJ, Pomper MG, Allaf ME, Javadi MS. Detection of 18F-FDG PET/CT occult lesions with 18F-DCFPyL PET/CT in a patient with metastatic renal cell carcinoma. Clin Nucl Med. 2016;41(1):83–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Siva S, Callahan J, Pryor D, Martin J, Lawrentschuk N, Hofman MS. Utility of 68 Ga prostate specific membrane antigen - positron emission tomography in diagnosis and response assessment of recurrent renal cell carcinoma. J Med Imaging Radiat Oncol. 2017;61(3):372–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Demirci E, Ocak M, Kabasakal L, Decristoforo C, Talat Z, Halaç M, et al. (68)Ga-PSMA PET/CT imaging of metastatic clear cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41(7):1461–2.CrossRefGoogle Scholar
  61. 61.
    Sasikumar A, Joy A, Nanabala R, Unni M, Tk P. Complimentary pattern of uptake in 18F-FDG PET/CT and 68Ga-prostate-specific membrane antigen PET/CT in a case of metastatic clear cell renal carcinoma. Clin Nucl Med. 2016;41(12):e517–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Zacho HD, Nielsen JB, Dettmann K, Haberkorn U, Petersen LJ. Incidental detection of thyroid metastases from renal cell carcinoma using 68Ga-PSMA PET/CT to assess prostate cancer recurrence. Clin Nucl Med. 2017;42(3):221–2.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Yin Y, Campbell SP, Markowski MC, Pierorazio PM, Pomper MG, Allaf ME, et al. Inconsistent detection of sites of metastatic non-clear cell renal cell carcinoma with PSMA-targeted [18F]DCFPyL PET/CT. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2018;14.Google Scholar
  64. 64.
    Roskoski R. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lai Y, Zhao Z, Zeng T, Liang X, Chen D, Duan X, et al. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int. 2018;18:31.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(6):1061–8.CrossRefGoogle Scholar
  68. 68.
    Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet Lond Engl. 2007;370(9605):2103–11.CrossRefGoogle Scholar
  69. 69.
    Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet Lond Engl. 2011;378(9807):1931–9.CrossRefGoogle Scholar
  70. 70.
    Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Pal SK, Quinn DI. Differentiating mTOR inhibitors in renal cell carcinoma. Cancer Treat Rev. 2013;39(7):709–19.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet Lond Engl. 2008;372(9637):449–56.CrossRefGoogle Scholar
  74. 74.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal cell carcinoma. N Engl J Med. 2015;373(19):1803–13.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet Lond Engl. 2019.Google Scholar
  79. 79.
    Hutson TE. Targeted therapies for the treatment of metastatic renal cell carcinoma: clinical evidence. Oncologist. 2011;16(Suppl 2):14–22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349(5):427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(31):3541–3.CrossRefGoogle Scholar
  82. 82.
    Shinagare AB, Krajewski KM, Braschi-Amirfarzan M, Ramaiya NH. Advanced renal cell carcinoma: role of the radiologist in the era of precision medicine. Radiology. 2017;284(2):333–51.PubMedCrossRefGoogle Scholar
  83. 83.
    Choi H, Charnsangavej C, Faria SC, Macapinlac HA, Burgess MA, Patel SR, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(13):1753–9.CrossRefGoogle Scholar
  84. 84.
    Ronot M, Bouattour M, Wassermann J, Bruno O, Dreyer C, Larroque B, et al. Alternative response criteria (Choi, European association for the study of the liver, and modified response evaluation criteria in solid tumors [RECIST]) versus RECIST 1.1 in patients with advanced hepatocellular carcinoma treated with sorafenib. Oncologist. 2014;19(4):394–402.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Vasudev NS, Goh V, Juttla JK, Thompson VL, Larkin JMG, Gore M, et al. Changes in tumour vessel density upon treatment with anti-angiogenic agents: relationship with response and resistance to therapy. Br J Cancer. 2013;109(5):1230–42.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(23):7412–20.CrossRefGoogle Scholar
  88. 88.
    Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(14):3936–43.CrossRefGoogle Scholar
  89. 89.
    Hodi FS, Ballinger M, Lyons B, Soria J-C, Nishino M, Tabernero J, et al. Immune-modified response evaluation criteria in solid tumors (imRECIST): refining guidelines to assess the clinical benefit of cancer immunotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(9):850–8.CrossRefGoogle Scholar
  90. 90.
    Caldarella C, Muoio B, Isgrò MA, Porfiri E, Treglia G, Giovanella L. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to tyrosine-kinase inhibitors in patients with metastatic primary renal cell carcinoma. Radiol Oncol. 2014;48(3):219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Matsuda M, Ishikawa E, Yamamoto T, Hatano K, Joraku A, Iizumi Y, et al. Potential use of prostate specific membrane antigen (PSMA) for detecting the tumor neovasculature of brain tumors by PET imaging with 89Zr-Df-IAB2M anti-PSMA minibody. J Neuro-Oncol. 2018;138(3):581–9.CrossRefGoogle Scholar
  92. 92.
    Gorin MA, Rowe SP, Hooper JE, Kates M, Hammers H-J, Szabo Z, et al. PSMA-targeted 18F-DCFPyL PET/CT imaging of clear cell renal cell carcinoma: results from a rapid autopsy. Eur Urol. 2017;71(1):145–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Stokke C, Gabiña PM, Solný P, Cicone F, Sandström M, Gleisner KS, et al. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the internal dosimetry task force. EJNMMI Phys. 2017;4(1):27.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med Off Publ Soc Nucl Med. 2016;57(7):1006–13.Google Scholar
  95. 95.
    Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schäfers M, Essler M, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med Off Publ Soc Nucl Med. 2017;58(1):85–90.Google Scholar
  96. 96.
    Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med Off Publ Soc Nucl Med. 2018;59(5):795–802.Google Scholar
  97. 97.
    Taïeb D, Foletti J-M, Bardiès M, Rocchi P, Hicks RJ, Haberkorn U. PSMA-targeted radionuclide therapy and salivary gland toxicity: why does it matter? J Nucl Med Off Publ Soc Nucl Med. 2018;59(5):747–8.Google Scholar
  98. 98.
    Sjögreen Gleisner K, Spezi E, Solny P, Gabina PM, Cicone F, Stokke C, et al. Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Phys. 2017;4(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhang J, Kulkarni HR, Singh A, Schuchardt C, Niepsch K, Langbein T, et al. 177Lu-PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer patients with a single functioning kidney. J Nucl Med Off Publ Soc Nucl Med. 2019;8.Google Scholar
  100. 100.
    Gorin MA, Rowe SP. Kidney cancer: PSMA: a potential therapeutic target in RCC. Nat Rev Urol. 2017;14(11):646–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Evangelista L, Basso U, Maruzzo M, Novara G. The role of radiolabeled prostate-specific membrane antigen positron emission tomography/computed tomography for the evaluation of renal cancer. Eur Urol Focus. 2018.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chiara Pozzessere
    • 1
    • 2
    Email author
  • Maria Bassanelli
    • 3
  • Anna Ceribelli
    • 3
  • Sazan Rasul
    • 4
  • Shuren Li
    • 4
  • John O. Prior
    • 2
  • Francesco Cicone
    • 2
  1. 1.Department of RadiologyAUSL Toscana Centro San Giuseppe HospitalEmpoliItaly
  2. 2.Department of Nuclear Medicine and Molecular ImagingLausanne University Hospital and University of LausanneLausanneSwitzerland
  3. 3.Division of Medical OncologySan Camillo De Lellis HospitalRietiItaly
  4. 4.Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided TherapyMedical University of ViennaViennaAustria

Personalised recommendations