Advertisement

Current Urology Reports

, 19:68 | Cite as

Endocrine, Sexual Function, and Infertility Side Effects of Immune Checkpoint Inhibitor Therapy for Genitourinary Cancers

  • Akshay Sood
  • Daniel Cole
  • Firas Abdollah
  • Ben Eilender
  • Zade Roumayah
  • Mustafa Deebajah
  • Ali Dabaja
  • Shaheen Alanee
Men's Health (A Dabaja, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Men’s Health

Abstract

Purpose of Review

Immune checkpoint therapy has grown in prominence in the last few decades and is being increasingly utilized in treatment of advanced cancers. Although information on toxicities of these drugs is forthcoming, not much is known regarding the toxicity profile of these drugs from a sexual function standpoint. We undertook the current review to appraise the literature for endocrine/sexual side effects of anti-PD-1/PD-L1 and anti-CTLA-4 therapy.

Recent Findings

Our review included 32 articles and focused primarily on the programmed death (PD) pathway. We found that endocrine side effects after anti-PD-1/PD-L1 therapy are relatively rare, with hypothyroidism (range < 1 to 40%) and hypophysitis (range < 1 to 10%) being the two most common. None of the studies specifically commented on the infertility or sexual side effects of these drugs. However, two studies evaluating biochemical profiles of patients undergoing therapy with ipilimumab (a CTLA-4 inhibitor) or combination therapy (CTLA-4 + PD-1/PD-L1 inhibitors) noted that about < 1 to ~ 60% of the patients developed hypogonadotropic hypogonadism. None of the studies provided information regarding clinically meaningful sexual health endpoints such as libido, erectile function assessments, or sexual function-related quality of life.

Summary

Endocrine side effects, although uncommon, are important and unique side effects of immune checkpoint therapy because they are often complex and can be life threatening. While side effects on sexual health may not be life threatening, they are lifestyle limiting. Thus, long-term follow-up, post-marketing surveillance, and future studies will need to elucidate the true rates of endocrine/sexual side effects and the mechanisms underlying them. This will aid in better counseling of the patients, as more of them undergo these novel immune checkpoint inhibitor therapies.

Keywords

Prostate cancer Bladder cancer Renal cancer Programmed death Side effects Immune checkpoint therapy 

Notes

Compliance with Ethical Standards

Conflict of Interest

Akshay Sood, Daniel Cole, Firas Abdollah, Ben Eilender, Zade Roumayah, Mustafa Deebajah, and Shaheen Alanee each declare no potential conflicts of interest.

Ali Dabaja is a section editor for Current Urology Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Prasad V, Mailankody S. Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Intern Med. 2017;177:1569–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–14.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Alexander W. The checkpoint immunotherapy revolution: what started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge. P & T : Peer Rev J Formul Manag. 2016;41:185–91.Google Scholar
  6. 6.
    Bellmunt J, Powles T, Vogelzang NJ. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat Rev. 2017;54:58–67.CrossRefPubMedGoogle Scholar
  7. 7.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Saitz TR, Serefoglu EC, Trost LW, Thomas R, Hellstrom WJ. The pre-treatment prevalence and types of sexual dysfunction among patients diagnosed with prostate cancer. Andrology. 2013;1:859–63.CrossRefPubMedGoogle Scholar
  9. 9.
    van der Aa MN, Bekker MD, van der Kwast TH, Essink-Bot ML, Steyerberg EW, Zwarthoff EC, et al. Sexual function of patients under surveillance for bladder cancer. BJU Int. 2009;104:35–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Wettergren L, Kent EE, Mitchell SA, Zebrack B, Lynch CF, Rubenstein MB, et al. Cancer negatively impacts on sexual function in adolescents and young adults: the AYA HOPE study. Psycho-Oncology. 2017;26:1632–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Donovan JL, Hamdy FC, Lane JA, Mason M, Metcalfe C, Walsh E, et al. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N Engl J Med. 2016;375:1425–37.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lewis RW, Fugl-Meyer KS, Corona G, Hayes RD, Laumann EO, Moreira ED Jr, et al. Definitions/epidemiology/risk factors for sexual dysfunction. J Sex Med. 2010;7:1598–607.CrossRefPubMedGoogle Scholar
  13. 13.
    Andersen BL. Psychological interventions for cancer patients to enhance the quality of life. J Consult Clin Psychol. 1992;60:552–68.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Spiegel D, Bloom JR, Kraemer HC, Gottheil E. Effect of psychosocial treatment on survival of patients with metastatic breast cancer. Lancet. 1989;2:888–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Edge B, Holmes D, Makin G. Sperm banking in adolescent cancer patients. Arch Dis Child. 2006;91:149–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Blackhall FH, Atkinson AD, Maaya MB, Ryder WD, Horne G, Brison DR, et al. Semen cryopreservation, utilisation and reproductive outcome in men treated for Hodgkin's disease. Br J Cancer. 2002;87:381–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK, et al. The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer. 1999;85:1186–96.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang XS, Zhao F, Fisch MJ, O'Mara AM, Cella D, Mendoza TR, et al. Prevalence and characteristics of moderate to severe fatigue: a multicenter study in cancer patients and survivors. Cancer. 2014;120:425–32.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wagner LI, Cella D. Fatigue and cancer: causes, prevalence and treatment approaches. Br J Cancer. 2004;91:822–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Evans W, Smith MR, Morley JE, Barnette KG, Rodriguez D, Steiner MS, et al. Ostarine increases lean body mass and improves physical performance in healthy elderly subjects: implications for cancer cachexia patients. J Clin Oncol 2007;25:9119-.Google Scholar
  22. 22.
    Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011;2:153–61.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Decker WK, Safdar A. Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley’s legacy revisited. Cytokine Growth Factor Rev. 2009;20:271–81.CrossRefPubMedGoogle Scholar
  24. 24.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunother. Sci. 2013;342:1432–3.Google Scholar
  28. 28.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
  32. 32.
    Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62.CrossRefPubMedGoogle Scholar
  33. 33.
  34. 34.
    Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D'Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
  36. 36.
    Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol : Off J Am Soc Clin Oncol. 2016;34:3119–25.CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015;125:3384–91.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med. 2000;192:1015–26.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.CrossRefPubMedGoogle Scholar
  42. 42.
    Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol, Immunother : CII. 2007;56:1173–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66:3381–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol : Off J Am Soc Clin Oncol. 2010;28:3167–75.CrossRefGoogle Scholar
  45. 45.
    Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res : Off J Am Assoc Cancer Res. 2013;19:462–8.CrossRefGoogle Scholar
  46. 46.
    Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Weber JS, Postow M, Lao CD, Schadendorf D. Management of adverse events following treatment with anti-programmed death-1 agents. Oncologist. 2016;21:1230–40.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hassel JC, Heinzerling L, Aberle J, Bahr O, Eigentler TK, Grimm MO, et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): evaluation and management of adverse drug reactions. Cancer Treat Rev. 2017;57:36–49.CrossRefPubMedGoogle Scholar
  49. 49.
    Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian Cancer. J Clin Oncol : Off J Am Soc Clin Oncol. 2015;33:4015–22.CrossRefGoogle Scholar
  50. 50.
    Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.CrossRefPubMedGoogle Scholar
  51. 51.
    Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6:230ra45.CrossRefPubMedGoogle Scholar
  52. 52.
    Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Caturegli P, Di Dalmazi G, Lombardi M, Grosso F, Larman HB, Larman T, et al. Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series. Am J Pathol. 2016;186:3225–35.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer. 2014;21:371–81.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mahzari M, Liu D, Arnaout A, Lochnan H. Immune checkpoint inhibitor therapy associated hypophysitis. Clin Med Insights Endocrinol Diabetes. 2015;8:21–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Akshay Sood
    • 1
  • Daniel Cole
    • 1
  • Firas Abdollah
    • 1
  • Ben Eilender
    • 1
  • Zade Roumayah
    • 1
  • Mustafa Deebajah
    • 1
  • Ali Dabaja
    • 1
  • Shaheen Alanee
    • 1
  1. 1.Vattikuti Urology InstituteHenry Ford HospitalDetroitUSA

Personalised recommendations