Current Urology Reports

, 19:60 | Cite as

Iron and a Man’s Reproductive Health: the Good, the Bad, and the Ugly

  • J. Scott Gabrielsen
  • Dolores J. Lamb
  • Larry I. Lipshultz
Andrology and Infertility (L Lipshultz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Andrology and Infertility


Purpose of Review

To discuss the physiologic and pathologic effects of iron on men’s reproductive health.

Recent Findings

Iron overload diseases are associated with hypogonadotropic hypogonadism, infertility, and sexual dysfunction in men. Recent findings have elucidated the roles by which iron may affect the male reproductive axis.


Iron is requisite for life. Iron can also catalyze the production of reactive oxygen species. To maintain balance, the human body tightly regulates dietary iron absorption. Severe iron overload disorders—e.g., hereditary hemochromatosis and β-thalassemia—occur when these regulatory mechanisms are deficient. While iron is necessary, the male reproductive system is particularly sensitive to iron overload. Hypogonadotropic hypogonadism, infertility, and sexual dysfunction commonly occur if excess iron from iron overload disorders is not removed. The average male in the USA consumes significantly more iron than needed to replace daily losses. How this degree of iron loading may affect one’s reproductive health remains less clear, but there is evidence it may have adverse effects.


Iron overload Hypogonadotropic hypogonadism Male infertility Erectile dysfunction Oxidative stress Anejaculation 


Compliance with Ethical Standards

Conflict of Interest

J. Scott Gabrielsen is supported in part by NIH K12 DK0083014 Multidisciplinary K12 Urologic Research Career Development Program (to DJL).

Dolores J. Lamb and Larry I. Lipshultz each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142:24–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 2012;1823:1468–83.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wu X-G, Wang Y, Wu Q, Cheng WH, Liu W, Zhao Y, et al. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood. 2014;124:1335–43.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93:1721–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Aschemeyer S, Qiao B, Stefanova D, Valore EV, Sek AC, Ruwe TA, et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood. 2018;131:899–910.CrossRefPubMedGoogle Scholar
  6. 6.
    • Drakesmith H, Nemeth E, Ganz T. Ironing out Ferroportin. Cell Metab. 2015;22:777–87. A comprehensive review of the role of ferroportin in body iron homeostasis CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Leichtmann-Bardoogo Y, Cohen LA, Weiss A, Marohn B, Schubert S, Meinhardt A, et al. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload. Am J Physiol Endocrinol Metab. 2012;302:E1519–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Papadimas J, Goulis DG, Mandala E, Georgiadis G, Zournatzi V, Tarlatzis BC, et al. Beta-thalassemia and gonadal axis: a cross-sectional, clinical study in a Greek population. Hormones (Athens). 2002;1:179–87.CrossRefGoogle Scholar
  9. 9.
    Bronspiegel-Weintrob N, Olivieri NF, Tyler B, Andrews DF, Freedman MH, Holland FJ. Effect of age at the start of iron chelation therapy on gonadal function in beta-thalassemia major. N Engl J Med. 1990;323:713–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Chatterjee R, Katz M. Reversible hypogonadotrophic hypogonadism in sexually infantile male thalassaemic patients with transfusional iron overload. Clin Endocrinol. 2000;53:33–42.CrossRefGoogle Scholar
  11. 11.
    Noetzli LJ, Panigrahy A, Mittelman SD, Hyderi A, Dongelyan A, Coates TD, et al. Pituitary iron and volume predict hypogonadism in transfusional iron overload. Am J Hematol. 2012;87:167–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Singer ST, Killilea D, Suh JH, Wang ZJ, Yuan Q, Ivani K, et al. Fertility in transfusion-dependent thalassemia men: effects of iron burden on the reproductive axis. Am J Hematol. 2015;90:E190–2.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bergeron C, Kovacs K. Pituitary siderosis. A histologic, immunocytologic, and ultrastructural study. Am J Pathol. 1978;93:295–309.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kontogeorgos G, Handy S, Kovacs K, Horvath E, Scheithauer BW. The anterior pituitary in hemochromatosis. Endocr Pathol. 1996;7:159–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Cundy T, Butler J, Bomford A, Williams R. Reversibility of hypogonadotrophic hypogonadism associated with genetic haemochromatosis. Clin Endocrinol. 1993;38:617–20.CrossRefGoogle Scholar
  16. 16.
    Hamer OW, Gnad M, Schölmerich J, Palitzsch KD. Successful treatment of erectile dysfunction and infertility by venesection in a patient with primary haemochromatosis. Eur J Gastroenterol Hepatol. 2001;13:985–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Kelly TM, Edwards CQ, Meikle AW, Kushner JP. Hypogonadism in hemochromatosis: reversal with iron depletion. Ann Intern Med. 1984;101:629–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Greenberg SR. The pathogenesis of hypophyseal fibrosis in aging: its relationship to tissue iron deposition. J Gerontol. 1975;30:531–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen M-J, Peng SS-F, Lu M-Y, Yang Y-L, Jou S-T, Chang H-H, et al. Effect of iron overload on impaired fertility in male patients with transfusion-dependent beta-thalassemia. Pediatr Res. 2017;93:295.Google Scholar
  20. 20.
    Soliman AT, Nasr I, Thabet A, Rizk MM, Matary El W. Human chorionic gonadotropin therapy in adolescent boys with constitutional delayed puberty vs those with beta-thalassemia major. Metab Clin Exp. 2005;54:15–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Lucesoli F, Caligiuri M, Roberti MF, Perazzo JC, Fraga CG. Dose-dependent increase of oxidative damage in the testes of rats subjected to acute iron overload. Arch Biochem Biophys. 1999;372:37–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Bachman E, Feng R, Travison T, Li M, Olbina G, Ostland V, et al. Testosterone suppresses hepcidin in men: a potential mechanism for testosterone-induced erythrocytosis. J Clin Endocrinol Metab. 2010;95:4743–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    • Macchi C, Steffani L, Oleari R, Lettieri A, Valenti L, Dongiovanni P, et al. Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms. Mol Cell Endocrinol. 2017;454:135–45. This is the first study to demonstrate that dietary iron overload can impair pituitary LH production in mice CrossRefPubMedGoogle Scholar
  24. 24.
    Papadimas J, Mandala E, Pados G, Kokkas B, Georgiadis G, Tarlatzis B, et al. Pituitary-testicular axis in men with beta-thalassaemia major. Hum Reprod. 1996;11:1900–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Morimoto H, Iwata K, Ogonuki N, Inoue K, Atsuo O, Kanatsu-Shinohara M, et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell. 2013;12:774–86.CrossRefPubMedGoogle Scholar
  26. 26.
    Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108(Pt 5):2017–25.PubMedGoogle Scholar
  27. 27.
    Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, et al. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59:1037–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Holmes SD, Lipshultz LI, Smith RG. Transferrin and gonadal dysfunction in man. Fertil Steril. 1982;38:600–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Bhattacharya I, Gautam M, Sarkar H, Shukla M, Majumdar SS. Advantages of pulsatile hormone treatment for assessing hormone-induced gene expression by cultured rat Sertoli cells. Cell Tissue Res. 2017;368:389–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Koşar A, Sarica K, Ozdiler E. Effect of varicocelectomy on seminal plasma transferrin values: a comparative clinical trial. Andrologia. 2000;32:19–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Hashemi MM, Behnampour N, Nejabat M, Tabandeh A, Ghazi-Moghaddam B, Joshaghani HR. Impact of seminal plasma trace elements on human sperm motility parameters. Rom J Intern Med. 2017;0:143.Google Scholar
  32. 32.
    Nenkova G, Petrov L, Alexandrova A. Role of trace elements for oxidative status and quality of human sperm. Balkan Med J. 2017;34:343–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Skandhan KP, Mazumdar BN, Sumangala B. Study into the iron content of seminal plasma in normal and infertile subjects. Urologia. 2012;79:54–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Perera D, Pizzey A, Campbell A, Katz M, Porter J, Petrou M, et al. Sperm DNA damage in potentially fertile homozygous beta-thalassaemia patients with iron overload. Hum Reprod. 2002;17:1820–5.CrossRefPubMedGoogle Scholar
  35. 35.
    • Naes SM, Basri O, Ismail F, Ata’Allah GA, Idris SK, Mat Adenan NA, et al. Impact of elemental iron on human spermatozoa and mouse embryonic development in a defined synthetic culture medium. Reprod Biol. 2017;17:199–209. This study demonstrates that iron is necessary for optimal sperm function, but too much is deleterious CrossRefPubMedGoogle Scholar
  36. 36.
    TOSIC J, WALTON A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect of respiration. Nature. 1946;158:485.CrossRefPubMedGoogle Scholar
  37. 37.
    Metzendorf C, Lind MI. Drosophila mitoferrin is essential for male fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis. BMC Dev Biol. 2010;10:68.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, et al. Mitoferrin is essential for erythroid iron assimilation. Nature. 2006;440:96–100.CrossRefPubMedGoogle Scholar
  39. 39.
    Gholirad S, Razi M, Hassani Bafrani H. Tracing of zinc and iron in experimentally induced varicocele: correlation with oxidative, nitrosative and carbonyl stress. Andrologia. 2017;49:e12687.CrossRefGoogle Scholar
  40. 40.
    Kiziler AR, Aydemir B, Guzel S, Yazici CM, Gulyasar T, Malkoc E, et al. Comparison of before and after varicocelectomy levels of trace elements, nitric oxide, asymmetric dimethylarginine and malondialdehyde in the seminal plasma and peripheral and spermatic veins. Biol Trace Elem Res. 2015;167:172–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Sundarraj K, Manickam V, Raghunath A, Periyasamy M, Viswanathan MP, Perumal E. Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environ Toxicol. 2017;32:594–608.CrossRefPubMedGoogle Scholar
  42. 42.
    Wardman P, Candeias LP. Fenton chemistry: an introduction. Radiat Res. 1996;145:523–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20:61–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Bajoria R, Chatterjee R. Hypogonadotrophic hypogonadism and diminished gonadal reserve accounts for dysfunctional gametogenesis in thalassaemia patients with iron overload presenting with infertility. Hemoglobin. 2011;35:636–42.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen Y-G, Lin T-Y, Lin C-L, Dai M-S, Ho C-L, Kao C-H. Risk of erectile dysfunction in transfusion-naive thalassemia men: a nationwide population-based retrospective cohort study. Medicine (Baltimore). 2015;94:e700.CrossRefGoogle Scholar
  46. 46.
    Lombardo T, Giammusso B, Frontini V, D’Arpa S, Pafumi C, Caruso S. Thalassaemic men affected by erectile dysfunction treated with transurethral alprostadil: case report. Hum Reprod. 2000;15:2375–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Sullivan ME, Thompson CS, Dashwood MR, Khan MA, Jeremy JY, Morgan RJ, et al. Nitric oxide and penile erection: is erectile dysfunction another manifestation of vascular disease? Cardiovasc Res. 1999;43:658–65.CrossRefPubMedGoogle Scholar
  48. 48.
    Ignarro LJ. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol. 1990;67:1–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Decaluwé K, Pauwels B, Boydens C, Thoonen R, Buys ES, Brouckaert P, et al. Erectile dysfunction in Heme-deficient nitric oxide-unresponsive soluble guanylate cyclase knock-in mice. J Sex Med. 2017;14:196–204.CrossRefPubMedGoogle Scholar
  50. 50.
    Ribeiro Júnior RF, Marques VB, Nunes DO, Stefanon I, Santos Dos L. Chronic iron overload induces functional and structural vascular changes in small resistance arteries via NADPH oxidase-dependent O2- production. Toxicol Lett. 2017;279:43–52.CrossRefPubMedGoogle Scholar
  51. 51.
    • Marques VB, Nascimento TB, Ribeiro RF, Broseghini-Filho GB, Rossi EM, Graceli JB, et al. Chronic iron overload in rats increases vascular reactivity by increasing oxidative stress and reducing nitric oxide bioavailability. Life Sci. 2015;143:89–97. This study provides molecular mechanisms by which iron overload may directly impair erectile function CrossRefPubMedGoogle Scholar
  52. 52.
    Day SM, Duquaine D, Mundada LV, Menon RG, Khan BV, Rajagopalan S, et al. Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombosis. Circulation. 2003;107:2601–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Agarwal A, Nandipati KC, Sharma RK, Zippe CD, Raina R. Role of oxidative stress in the pathophysiological mechanism of erectile dysfunction. J Androl. 2006;27:335–47.CrossRefPubMedGoogle Scholar
  54. 54.
    Wouthuis SF, van Deursen CTBM, Lintelo te MP, Rozeman CAM, Beekman R. Neuromuscular manifestations in hereditary haemochromatosis. J Neurol. 2010;257:1465–72.CrossRefPubMedGoogle Scholar
  55. 55.
    Cundy T, Bomford A, Butler J, Wheeler M, Williams R. Hypogonadism and sexual dysfunction in hemochromatosis: the effects of cirrhosis and diabetes. J Clin Endocrinol Metab. 1989;69:110–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Van deursen C, Delaere K, Tenkate J. Hemochromatosis and sexual dysfunction. Int J Impot Res. 2003;15:430–2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Scott Gabrielsen
    • 1
    • 2
  • Dolores J. Lamb
    • 3
    • 4
  • Larry I. Lipshultz
    • 1
    • 2
  1. 1.Center for Reproductive MedicineBaylor College of MedicineHoustonUSA
  2. 2.Scott Department of UrologyBaylor College of MedicineHoustonUSA
  3. 3.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  4. 4.Departments of Urology and Genetic MedicineWeill Cornell Medical CenterNew YorkUSA

Personalised recommendations