Lymph Node Staging in Prostate Cancer

  • Sandeep Sankineni
  • Anna M. Brown
  • Michele Fascelli
  • Yan Mee Law
  • Peter A. Pinto
  • Peter L. Choyke
  • Baris Turkbey
New Imaging Techniques (A Rastinehad and S Rais-Bahrami, Section Editors)
Part of the following topical collections:
  1. Topical Collection on New Imaging Techniques


Nodal staging is important in prostate cancer treatment. While surgical lymph node dissection is the classic method of determining whether lymph nodes harbor malignancy, this is a very invasive technique. Current noninvasive approaches to identifying malignant lymph nodes are limited. Conventional imaging methods rely on size and morphology of lymph nodes and have notoriously low sensitivity for detecting malignant nodes. New imaging techniques such as targeted positron emission tomography (PET) imaging and magnetic resonance lymphography (MRL) with iron oxide particles are promising for nodal staging of prostate cancer. In this review, the strengths and limitations of imaging techniques for lymph node staging of prostate cancer are discussed.


Prostate cancer Lymph node staging Imaging 


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    American Cancer Society. Cancer facts & figures 2014 [Internet]. Atlanta; 2014 p. 19–20. Available from:
  2. 2.
    Bader P, Burkhard FC, Markwalder R, Studer UE. Disease progression and survival of patients with positive lymph nodes after radical prostatectomy. Is there a chance of cure? J Urol. 2003;169:849–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Bastian PJ, Boorjian SA, Bossi A, Briganti A, Heidenreich A, Freedland SJ, et al. High-risk prostate cancer: from definition to contemporary management. Eur. Urol. [Internet]. 2012 [cited 2014 Oct 24];61:1096–106. Available from:
  4. 4.
    Daneshmand S, Quek ML, Stein JP, Lieskovsky G, Cai J, Pinski J, et al. Prognosis of patients with lymph node positive prostate cancer following radical prostatectomy: long-term results. J. Urol. [Internet]. 2004 [cited 2014 Nov 14];172:2252–5. Available from:
  5. 5.
    Briganti A, Chun FK-H, Salonia A, Suardi N, Gallina A, Da Pozzo LF, et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur. Urol. [Internet]. 2006 [cited 2014 Nov 14];50:1006–13. Available from:
  6. 6.
    Saokar A, Islam T, Jantsch M, Saksena M a, Hahn PF, Harisinghani MG. Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin. Imaging [Internet]. Elsevier Inc.; 2010 [cited 2014 Oct 30];34:361–6. Available from:
  7. 7.
    Mattei A, Danuser H. Contemporary imaging analyses of pelvic lymph nodes in the prostate cancer patient. Curr. Opin. Urol. [Internet]. 2011 [cited 2014 Oct 30];21:211–8. Available from:
  8. 8.
    Jager GJ, Barentsz JO, Oosterhof GO, Witjes JA, Ruijs SJH. Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo. Am. J. Roentgenol. [Internet]. 1996 [cited 2014 Oct 31];167:1503–7. Available from:
  9. 9.
    Engeler C, Wasserman N, Zhang G. Preoperative assessment of prostatic carcinoma by computerized tomography: weaknesses and new perspectives. Urology. 1992; 40:346–50. Available from:
  10. 10.
    Perrotti M, Kaufman RP, Jennings TA., Thaler HT, Soloway SM, Rifkin MD, et al. Endo-rectal coil magnetic resonance imaging in clinically localized prostate cancer: is it accurate? J. Urol. [Internet]. 1996;156:106–9. Available from:
  11. 11.
    Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur. Urol. [Internet]. 2012 [cited 2014 Oct 30];62:68–75. Available from:
  12. 12.
    Eisenhauer E a, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer [Internet]. Elsevier Ltd; 2009 [cited 2014 Jul 10];45:228–47. Available from:
  13. 13.
    Anzai Y, Piccoli C, Outwater E. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study 1. Radiology. 2003;228:777–88. doi:10.1148/radiol.2283020872.CrossRefPubMedGoogle Scholar
  14. 14.
    Budiharto T, Joniau S, Lerut E, Van den Bergh L, Mottaghy F, Deroose CM, et al. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur. Urol. [Internet]. 2011 [cited 2014 Oct 30];60:125–30. Available from:
  15. 15.
    Hövels A, Heesakkers R, Adang E, Jager G, Strum S, Hoogeveen Y, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol. [Internet]. 2008 [cited 2014 Oct 20];63:387–95. Available from:
  16. 16.
    Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP, et al. EAU guidelines on prostate cancer. Eur. Urol. [Internet]. 2008 [cited 2014 Sep 17];53:68–80. Available from:
  17. 17.
    Tabatabaei S, Saylor PJ, Coen J, Dahl DM. Prostate cancer imaging: what surgeons, radiation oncologists, and medical oncologists want to know. AJR. Am. J. Roentgenol. [Internet]. 2011 [cited 2014 Oct 30];196:1263–6. Available from:
  18. 18.
    Borley N, Fabrin K, Sriprasad S, Mondaini N, Thompson P, Muir G, et al. Laparoscopic pelvic lymph node dissection allows significantly more accurate staging in “high-risk” prostate cancer compared to MRI or CT. Scand. J. Urol. Nephrol. [Internet]. 2003 [cited 2014 Oct 31];37:382–6. Available from:
  19. 19.
    Dooms G, Hricak H, Crooks L, Higgins C. Magnetic resonance imaging of the lymph nodes: comparison with CT. Radiology. 1984;153:719–28. doi:10.1148/radiology.153.3.6093190.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang W, Lam W. Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. Am J. 2000;175:759–66. doi:10.2214/ajr.175.3.1750759.Google Scholar
  21. 21.
    Brown G, Richards C, Bourne M. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison 1. Radiology [Internet]. 2003 [cited 2014 Oct 31];227:371–7. Available from:
  22. 22.
    Kim JH, Beets GL, Kim M-J, Kessels AGH, Beets-Tan RGH. High-resolution MR imaging for nodal staging in rectal cancer: are there any criteria in addition to the size? Eur. J. Radiol. [Internet]. 2004 [cited 2014 Oct 31];52:78–83. Available from:
  23. 23.
    Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, et al. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology [Internet]. 2014 [cited 2014 Dec 14];273:125–35. Available from:
  24. 24.•
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 2003;348:2491–9. One of the largest series on iron oxide enhanced MR for lymph node staging of prostate cancer.Google Scholar
  25. 25.
    Harisinghani MG, Saini S, Weissleder R, Hahn PF, Yantiss RK, Tempany C, et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. AJR. Am. J. Roentgenol. [Internet]. 1999 [cited 2014 Nov 7];172:1347–51. Available from:
  26. 26.
    Barentsz JO, Fütterer JJ, Takahashi S. Use of ultrasmall superparamagnetic iron oxide in lymph node MR imaging in prostate cancer patients. Eur J Radiol. 2007;63:369–72.CrossRefPubMedGoogle Scholar
  27. 27.
    Islam T, Wolf G. The pharmacokinetics of the lymphotropic nanoparticle MRI contrast agent ferumoxtran-10. Cancer Biomarkers. 2009;5:69–73.PubMedGoogle Scholar
  28. 28.
    Triantafyllou M, Studer UE, Birkhäuser FD, Fleischmann A, Bains LJ, Petralia G, et al. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur. J. Cancer [Internet]. 2013 [cited 2014 Nov 14];49:616–24. Available from:
  29. 29.
    Birkhäuser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol. 2013;64:953–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Heesakkers RAM, Fütterer JJ, Hövels AM, van den Bosch HCM, Scheenen TWJ, Hoogeveen YL, et al. Prostate cancer evaluated with ferumoxtran-10-enhanced T2*-weighted MR imaging at 1.5 and 3.0 T: early experience. Radiology. 2006;239:481–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Fortuin AS, Deserno WMLLG, Meijer HJM, Jager GJ, Takahashi S, Debats OA, et al. Value of PET/CT and MR lymphography in treatment of prostate cancer patients with lymph node metastases. Int J Radiat Oncol, Biol, Phys. 2012;84:712–8.CrossRefGoogle Scholar
  32. 32.
    Anzai Y. Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top Magn Reson Imaging. 2004;15:103–11. Available from
  33. 33.
    Bashir MR, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging [Internet]. 2014 [cited 2014 Nov 7]; Available from:
  34. 34.
    Landry R, Jacobs PM, Davis R, Shenouda M, Bolton WK. Pharmacokinetic study of ferumoxytol: a new iron replacement therapy in normal subjects and hemodialysis patients. Am. J. Nephrol. [Internet]. [cited 2014 Nov 14];25:400–10. Available from:
  35. 35.
    Spinowitz BS, Schwenk MH, Jacobs PM, Bolton WK, Kaplan MR, Charytan C, et al. The safety and efficacy of ferumoxytol therapy in anemic chronic kidney disease patients. Kidney Int. [Internet]. 2005 [cited 2014 Nov 14];68:1801–7. Available from:
  36. 36.
    Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin. J. Am. Soc. Nephrol. [Internet]. 2009 [cited 2014 Nov 14];4:386–93. Available from:
  37. 37.
    Harisinghani M, Ross RW, Guimaraes AR, Weissleder R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia [Internet]. 2007 [cited 2014 Nov 14];9:1160–5. Available from:
  38. 38.
    Turkbey B. A phase I dosing study of ferumoxytol for magnetic resonance lymphography at 3 Tesla in patients with prostate cancer.Google Scholar
  39. 39.
    U.S. Food and Drug Administration. FDA approved drug products: Feraheme™ (ferumoxytol) injection [Internet]. 2009. Available from:
  40. 40.
    Auerbach M, Strauss W, Auerbach S, Rineer S, Bahrain H. Safety and efficacy of total dose infusion of 1,020 mg of ferumoxytol administered over 15 min. Am. J. Hematol. [Internet]. 2013 [cited 2014 Dec 14];88:944–7. Available from:
  41. 41.
    Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F-choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology [Internet]. 2010 [cited 2014 Nov 14];254:925–33. Available from:
  42. 42.
    Stewart GD, Gray K, Pennington CJ, Edwards DR, Riddick ACP, Ross JA, et al. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncol. Rep. [Internet]. 2008 [cited 2014 Nov 14];20:1561–7. Available from:
  43. 43.
    Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology [Internet]. 1996 [cited 2014 Nov 14];199:751–6. Available from:
  44. 44.
    Schöder H, Herrmann K, Gönen M, Hricak H, Eberhard S, Scardino P, et al. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin. Cancer Res. [Internet]. 2005 [cited 2014 Nov 14];11:4761–9. Available from:
  45. 45.
    Kao P-F, Chou Y-H, Lai C-W. Diffuse FDG uptake in acute prostatitis. Clin. Nucl. Med. [Internet]. 2008 [cited 2014 Nov 14];33:308–10. Available from:
  46. 46.
    Kotzerke J, Prang J, Neumaier B, Volkmer B, Guhlmann A, Kleinschmidt K, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur. J. Nucl. Med. [Internet]. 2000 [cited 2014 Nov 14];27:1415–9. Available from:
  47. 47.
    Tilki D, Reich O, Graser A, Hacker M, Silchinger J, Becker AJ, et al. 18F-fluoroethylcholine PET/CT identifies lymph node metastasis in patients with prostate-specific antigen failure after radical prostatectomy but underestimates its extent. Eur. Urol. [Internet]. 2013 [cited 2014 Nov 14];63:792–6. Available from:
  48. 48.•
    Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur. Urol. [Internet]. 2013 [cited 2014 Nov 3];63:1040–8. Available from: A detailed review and meta-analysis of choline PET/CT for nodal staging of prostate cancer.
  49. 49.
    Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin. Nucl. Med. [Internet]. 2013 [cited 2014 Nov 14];38:305–14. Available from:
  50. 50.
    Wright GL, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. [Internet]. [cited 2014 Nov 14];1:18–28. Available from:
  51. 51.
    Hinkle GH, Burgers JK, Olsen JO, Williams BS, Lamatrice RA, Barth RF, et al. Prostate cancer abdominal metastases detected with indium-111 capromab pendetide. J. Nucl. Med. [Internet]. 1998 [cited 2014 Nov 14];39:650–2. Available from:
  52. 52.
    Schettino CJ, Kramer EL, Noz ME, Taneja S, Padmanabhan P, Lepor H. Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer. AJR. Am. J. Roentgenol. [Internet]. 2004 [cited 2014 Nov 14];183:519–24. Available from:
  53. 53.
    Beheshti M, Kunit T, Haim S, Zakavi R, Schiller C, Stephens A, et al. BAY 1075553 PET-CT for staging and restaging prostate cancer patients: comparison with [(18)F] fluorocholine PET-CT (phase I study). Mol. Imaging Biol. [Internet]. 2014 [cited 2014 Nov 14]; Available from:
  54. 54.
    Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr. Top. Med. Chem. [Internet]. 2013 [cited 2014 Nov 14];13:951–62. Available from:
  55. 55.
    18F-DCFBC PET/CT in prostate cancer [Internet]. Natl. Cancer Inst. 2014. Available from:
  56. 56.
    Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging [Internet]. 2014 [cited 2014 Dec 14]; Available from:
  57. 57.
    Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur. J. Nucl. Med. Mol. Imaging [Internet]. 2005 [cited 2014 Nov 14];32:344–50. Available from:
  58. 58.
    Beattie BJ, Smith-Jones PM, Jhanwar YS, Schöder H, Schmidtlein CR, Morris MJ, et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J. Nucl. Med. [Internet]. 2010 [cited 2014 Nov 1];51:183–92. Available from:
  59. 59.
    Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J. Nucl. Med. [Internet]. 2007 [cited 2014 Nov 14];48:56–63. Available from:
  60. 60.
    Nanni C, Schiavina R, Boschi S, Ambrosini V, Pettinato C, Brunocilla E, et al. Comparison of 18F-FACBC and 11C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur. J. Nucl. Med. Mol. Imaging [Internet]. 2013 [cited 2014 Nov 14];40 Suppl 1:S11–7. Available from:
  61. 61.
    Kairemo K, Rasulova N, Partanen K, Joensuu T. Preliminary clinical experience of trans-1-amino-3-(18)F-fluorocyclobutanecarboxylic acid (anti-(18)F-FACBC) PET/CT imaging in prostate cancer patients. Biomed Res. Int. [Internet]. 2014 [cited 2014 Nov 14];2014:305182. Available from:
  62. 62.
    Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. [Internet]. 2006 [cited 2014 Nov 14];9:230–4. Available from:
  63. 63.•
    Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J. Nucl. Med. [Internet]. 2008 [cited 2014 Nov 14];49:2031–41. Available from: A comprehensive review on novel PET tracers for iamging of prostate cancer metastases.
  64. 64.
    Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, et al. 11C-acetate PET imaging of prostate cancer. J. Nucl. Med. [Internet]. 2002 [cited 2014 Nov 14];43:181–6. Available from:
  65. 65.
    Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging [Internet]. 2003 [cited 2014 Nov 14];30:607–11. Available from:
  66. 66.
    Haseebuddin M, Dehdashti F, Siegel BA, Liu J, Roth EB, Nepple KG, et al. 11C-acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J. Nucl. Med. [Internet]. 2013 [cited 2014 Nov 14];54:699–706. Available from:

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • Sandeep Sankineni
    • 1
  • Anna M. Brown
    • 1
    • 2
  • Michele Fascelli
    • 3
    • 4
  • Yan Mee Law
    • 5
  • Peter A. Pinto
    • 3
  • Peter L. Choyke
    • 1
  • Baris Turkbey
    • 1
  1. 1.Molecular Imaging Program, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Duke University School of MedicineDurhamUSA
  3. 3.Urologic Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  4. 4.Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA
  5. 5.Department of Diagnostic RadiologySingapore General HospitalSingaporeSingapore

Personalised recommendations