Current Urology Reports

, 16:22 | Cite as

Preoperative Imaging for Staging Bladder Cancer

  • Maxim J. McKibben
  • Michael E. Woods
New Imaging Techniques (A Rastinehad and S Rais-Bahrami, Section Editors)
Part of the following topical collections:
  1. Topical Collection on New Imaging Techniques


Accurate preoperative staging of bladder cancer is essential in determining the extent of disease and optimal treatment. The current gold standard of transurethral resection of bladder tumor (TURBT) followed by computed tomography (CT) imaging provides excellent staging specificity, but often understages the disease, leading to pathologic upstaging and adverse outcomes in patients undergoing radical cystectomy. Newer imaging modalities, such as multiparametric magnetic resonance (MR) imaging and positron emission tomography (PET) combined with CT or MR provides promising imaging alternatives which may improve accuracy of staging both local and distant disease.


Bladder cancer Cancer staging Computed tomography Magnetic resonance imaging PET Understaging 



Muscle-invasive bladder cancer


Non-muscle-invasive bladder cancer


Magnetic resonance


Dynamic contrast-enhanced MR


Diffusion-weighted image MR


Computed tomography


Positron emission tomography


Nephrogenic systemic fibrosis


Transurethral resection of bladder tumor


Two-dimensional ultrasound


Three-dimensional ultrasound


Contrast-enhanced ultrasound


Ultra-small super-paramagnetic particles of iron oxide


Apparent diffusion coefficient




Glomerular filtration rate


Receiver operating characteristic


Compliance with Ethics Guidelines

Conflict of Interest

Dr. Maxim J. McKibben and Dr. Michael E. Woods each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    National Cancer Institute. Surveillance, epidemiology, and end results program (SEER) fact sheet. Updated 2014. Accessed 05/23, 2014.
  2. 2.
    Clark P. NCCN clinical practice guidelines in oncology: bladder cancer - version 2. 2014.Google Scholar
  3. 3.
    Witjes JA, Compérat E, Cowan NC, et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur Urol. 2014;65(4):778–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Shariat SF, Palapattu GS, Karakiewicz PI, et al. Discrepancy between clinical and pathologic stage: impact on prognosis after radical cystectomy. Eur Urol. 2007;51(1):137–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Tritschler S, Mosler C, Straub J, et al. Staging of muscle-invasive bladder cancer: can computerized tomography help us to decide on local treatment? World J Urol. 2012;30(6):827–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Gray PJ, Lin CC, Jemal A, et al. Clinical–pathologic stage discrepancy in bladder cancer patients treated with radical cystectomy: results from the national cancer data base. Int J Radiat Oncol Biol Phys. 2014;88(5):1048–56.CrossRefPubMedGoogle Scholar
  7. 7.
    Bostrom PJ, van Rhijn BW, Fleshner N, et al. Staging and staging errors in bladder cancer. Eur Urol Suppl. 2010;9(1):2–9.CrossRefGoogle Scholar
  8. 8.
    Liedberg F, Bendahl PO, Davidsson T, et al. Preoperative staging of locally advanced bladder cancer before radical cystectomy using 3 tesla magnetic resonance imaging with a standardized protocol. Scand J Urol. 2013;47(2):108–12.Google Scholar
  9. 9.
    Barentsz J, Engelbrecht M, Witjes J, De la Rosette J, Van der Graaf M. MR imaging of the male pelvis. Eur Radiol. 1999;9(9):1722–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Paik ML, Scolieri MJ, Brown SL, Spirnak JP, Resnick MI. Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol. 2000;163(6):1693–6.CrossRefPubMedGoogle Scholar
  11. 11.
    El-Assmy A, Abou-El-Ghar ME, Mosbah A, et al. Bladder tumour staging: comparison of diffusion-and T2-weighted MR imaging. Eur Radiol. 2009;19(7):1575–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Kundra V, Silverman PM. Imaging in the diagnosis, staging, and follow-up of cancer of the urinary bladder. Am J Roentgenol. 2003;180(4):1045–54.CrossRefGoogle Scholar
  13. 12.••
    de Haas RJ, Steyvers MJ, Fütterer JJ. Multiparametric MRI of the bladder: ready for clinical routine? Am J Roentgenol. 2014;202(6):1187–95. An excellent review of recent studies of the multiparametric MR imaging in bladder cancer, with clear explanations of various MR techniques and their strengths and weaknesses.CrossRefGoogle Scholar
  14. 14.
    Tekes A, Kamel IR, Imam K, Chan TY, Schoenberg MP, Bluemke DA. MR imaging features of transitional cell carcinoma of the urinary bladder. Am J Roentgenol. 2003;180(3):771–7.CrossRefGoogle Scholar
  15. 15.
    Kim B, Semelka RC, Ascher SM, Chalpin DB, Carroll PR, Hricak H. Bladder tumor staging: comparison of contrast-enhanced CT, T1- and T2-weighted MR imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology. 1994;193(1):239–45.CrossRefPubMedGoogle Scholar
  16. 15.••
    Daneshmand S, Ahmadi H, Huynh LN, Dobos N. Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: results from a prospective study. Urology. 2012;80(6):1313–8. The largest prospective study to date of bladder cancer T and N staging using dynamic contrast-enhanced MR.CrossRefPubMedGoogle Scholar
  17. 17.
    Tekes A, Kamel I, Imam K, et al. Dynamic MRI of bladder cancer: evaluation of staging accuracy. Am J Roentgenol. 2005;184(1):121–7.CrossRefGoogle Scholar
  18. 18.
    Tuncbilek N, Kaplan M, Altaner S, et al. Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer. Am J Roentgenol. 2009;192(4):949–55.CrossRefGoogle Scholar
  19. 19.
    Hafeez S, Huddart R. Advances in bladder cancer imaging. BMC Med. 2013;11:104-7015-11-104. doi: 10.1186/1741-7015-11-104.CrossRefGoogle Scholar
  20. 20.
    Ah-See ML, Makris A, Taylor NJ, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2008;14(20):6580–9. doi: 10.1158/1078-0432.CCR-07-4310.CrossRefPubMedGoogle Scholar
  21. 20.•
    Nguyen HT, Jia G, Shah ZK et al. Prediction of chemotherapeutic response in bladder cancer using k‐means clustering of dynamic contrast‐enhanced (DCE)‐MRI pharmacokinetic parameters. J Magn Reson Imaging. 2014. Pilot study evaluating DCE-MR characteristics as a surrogate for tumor blood flow in assessing early response to chemotherapy. Further studies may provide early guidance in management of patients undergoing neoadjuvant chemotherapy.Google Scholar
  22. 22.
    ACR committee on Drugs and Contrast Media. ACR manual on contrast media. 2013:
  23. 23.
    Yoshida S, Koga F, Kobayashi S, et al. Diffusion-weighted magnetic resonance imaging in management of bladder cancer, particularly with multimodal bladder-sparing strategy. World J Radiol. 2014;6(6):344.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Papalia R, Simone G, Grasso R, et al. Diffusion‐weighted magnetic resonance imaging in patients selected for radical cystectomy: detection rate of pelvic lymph node metastases. BJU Int. 2012;109(7):1031–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Sevcenco S, Ponhold L, Heinz-Peer G et al. Prospective evaluation of diffusion-weighted MRI of the bladder as a biomarker for prediction of bladder cancer aggressiveness. 2014.Google Scholar
  26. 25.•
    Kobayashi S, Koga F, Kajino K, et al. Apparent diffusion coefficient value reflects invasive and proliferative potential of bladder cancer. J Magn Reson Imaging. 2014;39(1):172–8. Confirms DW-MR characteristics correlate with bladder cancers’ biologic aggressiveness.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen C, Li C, Kuo Y, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants—initial experience 1. Radiology. 2006;239(2):448–56.CrossRefPubMedGoogle Scholar
  28. 28.
    Cui Y, Zhang X, Sun Y, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases 1. Radiology. 2008;248(3):894–900.CrossRefPubMedGoogle Scholar
  29. 29.
    Harry VN, Semple SI, Gilbert FJ, Parkin DE. Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol. 2008;111(2):213–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Kyriazi S, Collins DJ, Messiou C, et al. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging—value of histogram analysis of apparent diffusion coefficients. Radiology. 2011;261(1):182–92.CrossRefPubMedGoogle Scholar
  31. 31.
    Deserno WM, Harisinghani MG, Taupitz M, et al. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10–enhanced MR imaging 1. Radiology. 2004;233(2):449–56.CrossRefPubMedGoogle Scholar
  32. 31.•
    Birkhäuser FD, Studer UE, Froehlich JM, et al. Combined ultrasmall superparamagnetic particles of iron oxide–enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol. 2013;64(6):953–60. Pilot study combining DW-MR and lymphotrophic nanoparticle-enhanced MR in clinical staging of bladder, demonstrating excellent accuracy in staging bladder cancer.CrossRefPubMedGoogle Scholar
  33. 33.
    Lu Y, Chen J, Liang J, et al. Clinical value of FDG PET or PET/CT in urinary bladder cancer: a systemic review and meta-analysis. Eur J Radiol. 2012;81(9):2411–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Apolo AB, Riches J, Schoder H, et al. Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J Clin Oncol. 2010;28(25):3973–8. doi: 10.1200/JCO.2010.28.7052.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Harkirat S, Anand S, Jacob M. Forced diuresis and dual-phase F-fluorodeoxyglucose-PET/CT scan for restaging of urinary bladder cancers. Indian J Radiol Imaging. 2010;20(1):13–9. doi: 10.4103/0971-3026.59746.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Kibel AS, Dehdashti F, Katz MD, et al. Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol. 2009;27(26):4314–20. doi: 10.1200/JCO.2008.20.6722.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Jadvar H, Quan V, Henderson RW, Conti PS. [F-18]-fluorodeoxyglucose PET and PET-CT in diagnostic imaging evaluation of locally recurrent and metastatic bladder transitional cell carcinoma. Int J Clin Oncol. 2008;13(1):42–7.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Drieskens O, Oyen R, Van Poppel H, Vankan Y, Flamen P, Mortelmans L. FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging. 2005;32(12):1412–7.CrossRefPubMedGoogle Scholar
  39. 38.••
    Goodfellow H, Viney Z, Hughes P, et al. Role of fluorodeoxyglucose positron emission tomography (FDG PET)‐computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014;114(3):389–95. The largest head-to-head comparison to date of CT versus PET/CT for staging bladder cancer. Demonstrates modest staging benefit with PET/CT.PubMedGoogle Scholar
  40. 40.
    Liu IJ, Lai YH, Espiritu JI, et al. Evaluation of fluorodeoxyglucose positron emission tomography imaging in metastatic transitional cell carcinoma with and without prior chemotherapy. Urol Int. 2006;77(1):69–75.CrossRefPubMedGoogle Scholar
  41. 41.
    Anjos DA, Etchebehere EC, Ramos CD, Santos AO, Albertotti C, Camargo EE. 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med. 2007;48(5):764–70.CrossRefPubMedGoogle Scholar
  42. 42.
    Schöder H, Ong SC, Reuter VE, et al. Initial results with 11C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol. 2012;14(2):245–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Picchio M, Treiber U, Beer AJ, et al. Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med. 2006;47(6):938–44.PubMedGoogle Scholar
  44. 44.
    Maurer T, Souvatzoglou M, Kübler H, et al. Diagnostic efficacy of [11C] choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol. 2012;61(5):1031–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Ahlström H, Malmström P, Letocha H, Andersson J, Långström B, Nilsson S. Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol. 1996;37(2):180–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Even-Sapir E, Metser U, Flusser G, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45(2):272–8.PubMedGoogle Scholar
  47. 47.
    Hillner BE, Siegel BA, Hanna L, et al. Impact of 18F-fluoride PET on intended management of patients with cancers other than prostate cancer: results from the national oncologic PET registry. J Nucl Med. 2014;55(7):1054–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Chakraborty D, Bhattacharya A, Mete UK, Mittal BR. Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med. 2013;38(8):616–21. doi: 10.1097/RLU.0b013e31828da5cc.CrossRefPubMedGoogle Scholar
  49. 49.
    Orlova A, Tran TA, Ekblad T, Karlström AE, Tolmachev V. 186Re-maSGS-ZHER2: 342, a potential affibody conjugate for systemic therapy of HER2-expressing tumours. Eur J Nucl Med Mol Imaging. 2010;37(2):260–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Kjær A, Loft A, Law I, et al. PET/MRI in cancer patients: first experiences and vision from Copenhagen. MAGMA. 2013;26(1):37–47.CrossRefPubMedGoogle Scholar
  51. 51.
    Partovi S, Robbin MR, Steinbach OC, et al. Initial experience of MR/PET in a clinical cancer center. J Magn Reson Imaging. 2014;39(4):768–80.CrossRefPubMedGoogle Scholar
  52. 51.•
    Li Q, Tang J, He E, et al. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder. Eur J Radiol. 2012;81(11):2936–42. Small study comparing 3D CE-US to 3D US and CE-US alone, demonstrating good accuracy in clinical staging of the primary bladder cancer.CrossRefPubMedGoogle Scholar
  53. 53.
    Park HJ, Hong SS, Kim JH, et al. Tumor detection and serosal invasion of bladder cancer: role of three-dimensional volumetric reconstructed US. Abdom Imaging. 2010;35(3):265–70.CrossRefPubMedGoogle Scholar
  54. 54.
    Caruso G, Salvaggio G, Campisi A, et al. Bladder tumor staging: comparison of contrast-enhanced and gray-scale ultrasound. Am J Roentgenol. 2010;194(1):151–6.CrossRefGoogle Scholar
  55. 55.
    Xu C, Zhang Z, Wang H, et al. A new tool for distinguishing muscle invasive and non-muscle invasive bladder cancer: the initial application of flexible ultrasound bronchoscope in bladder tumor staging. PLoS One. 2014;9(4):e92385.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of UrologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations