Skip to main content

Advertisement

Log in

Emerging Endoscopic Imaging Technologies for Bladder Cancer Detection

  • New Imaging Techniques (A Atala and A Rastinehad, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Modern urologic endoscopy is the result of continuous innovations since the early nineteenth century. White-light cystoscopy is the primary strategy for identification, resection, and local staging of bladder cancer. While highly effective, white light cystoscopy has several well-recognized shortcomings. Recent advances in optical imaging technologies and device miniaturization hold the potential to improve bladder cancer diagnosis and resection. Photodynamic diagnosis and narrow band imaging are the first to enter the clinical arena. Confocal laser endomicroscopy, optical coherence tomography, Raman spectroscopy, UV autofluorescence, and others have shown promising clinical and pre-clinical feasibility. We review their mechanisms of action, highlight their respective advantages, and propose future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Herr H. Early history of endoscopic treatment of bladder tumors from Grunfeld ’ s Polypenkneipe to the Stern-McCarthy Resectoscope. J Endourol. 2006;20(2):85–91. This article highlights the most noteworthy innovations that occurred in urologic endoscopy providing an overview of the history of endoscopy and the endoscopic management of bladder tumors.

    Article  PubMed  Google Scholar 

  2. Natalin RA, Landman J. Where next for the endoscope? Nat Rev Urol. 2009;6(11):622–8.

    Article  PubMed  Google Scholar 

  3. Samplaski MK, Jones JS. Two centuries of cystoscopy: the development of imaging, instrumentation and synergistic technologies. BJU Int. 2009;103(2):154–8.

    Article  PubMed  Google Scholar 

  4. Witjes JA. Bladder carcinoma in situ in 2003: state of the art. Eur Urol. 2004;45(2):142–6.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng L, Neumann RM, Weaver AL, Cheville JC, Leibovich BC, Ramnani DM, et al. Grading and staging of bladder carcinoma in transurethral resection specimens. Correlation with 105 matched cystectomy specimens. Am J Clin Pathol. 2000;113(2):275–9.

    Article  CAS  PubMed  Google Scholar 

  6. Babjuk M. Transurethral resection of non–muscle-invasive bladder cancer. Eur Urol Suppl. 2009;8(7):542–8.

    Article  Google Scholar 

  7. Liu J-J, Droller MJ, Liao JC. New optical imaging technologies for bladder cancer: considerations and perspectives. J Urol. 2012;188(2):361–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kausch I, Sommerauer M, Montorsi F, Stenzl A, Jacqmin D, Jichlinski P, et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010;57(4):595–606.

    Article  PubMed  Google Scholar 

  9. Mark JR, Gelpi-Hammerschmidt F, Trabulsi EJ, Gomella LG. Blue light cystoscopy for detection and treatment of non-muscle invasive bladder cancer. Can J Urol. 2012;19(2):6227–31.

    PubMed  Google Scholar 

  10. Lapini A, Minervini A, Masala A, Schips L, Pycha A, Cindolo L, et al. A comparison of hexaminolevulinate (Hexvix(®)) fluorescence cystoscopy and white-light cystoscopy for detection of bladder cancer: results of the HeRo observational study. Surg Endosc. 2012;26(12):3634–41.

    Article  PubMed  Google Scholar 

  11. Rink M, Babjuk M, Catto JWF, Jichlinski P, Shariat SF, Stenzl A, et al. Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol. 2013;64(4):624–38.

    Article  PubMed  Google Scholar 

  12. Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, et al. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol. 2012;188(1):58–62.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cauberg ECC, Kloen S, Visser M, de la Rosette JJMCH, Babjuk M, Soukup V, et al. Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer. Urology. 2010;76(3):658–63.

    Article  PubMed  Google Scholar 

  14. Naselli A, Introini C, Bertolotto F, Spina B, Puppo P. Feasibility of transurethral resection of bladder lesion performed entirely by means of narrow-band imaging. J Endourol Endourol Soc. 2010;24(7):1131–4.

    Article  Google Scholar 

  15. Naselli A, Introini C, Timossi L, Spina B, Fontana V, Pezzi R, et al. A randomized prospective trial to assess the impact of transurethral resection in narrow band imaging modality on non-muscle-invasive bladder cancer recurrence. Eur Urol. 2012;61(5):908–13.

    Article  PubMed  Google Scholar 

  16. Naito S, van Rees Vellinga S, de la Rosette J. Global randomized narrow band imaging versus white light study in nonmuscle invasive bladder cancer: accession to the first milestone-enrollment of 600 patients. J Endourol Endourol Soc. 2013;27(1):1–3.

    Article  Google Scholar 

  17. Sonn GA, Jones S-NE, Tarin TV, Du CB, Mach KE, Jensen KC, et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J Urol. 2009;182(4):1299–305.

    Article  PubMed  Google Scholar 

  18. Wu K, Liu J-J, Adams W, Sonn GA, Mach KE, Pan Y, et al. Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology. 2011;78(1):225–31. This article compiled representative confocal images from the urinary tract into an imaging atlas. The atlas was used to develop the diagnostic imaging criteria for benign and neoplastic conditions of the urinary tract to facilitate the use and enable adaptation of CLE.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chang TC, Liu J-J, Hsiao ST, Pan Y, Mach KE, Leppert JT, et al. Interobserver agreement of confocal laser endomicroscopy for bladder cancer. J Endourol Endourol Soc. 2013;27(5):598–603.

    Article  Google Scholar 

  20. Wallace MB, Meining A, Canto MI, Fockens P, Miehlke S, Roesch T, et al. The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther. 2010;31(5):548–52.

    Article  CAS  PubMed  Google Scholar 

  21. Adams W, Wu K, Liu J-J, Hsiao STT, Jensen KC, Liao JC. Comparison of 2.6- and 1.4-mm imaging probes for confocal laser endomicroscopy of the urinary tract. J Endourol Endourol Soc. 2011;25(6):917–21.

    Article  Google Scholar 

  22. Hsiung P-L, Hsiung P-L, Hardy J, Friedland S, Soetikno R, Du CB, et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med. 2008;14(4):454–8. This study identified and synthesized a peptide, VRPMPLQ, that bound more strongly to dysplastic colonocytes than to normal cells. By conjugating the peptide to fluorescein the fluorescent signals were detected with CLE.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sturm MB, Joshi BP, Lu S, Piraka C, Khondee S, Elmunzer BJ, et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med. 2013;5(184):184ra61.

    Article  CAS  PubMed  Google Scholar 

  24. Hermes B, Spöler F, Naami A, Bornemann J, Först M, Grosse J, et al. Visualization of the basement membrane zone of the bladder by optical coherence tomography: feasibility of noninvasive evaluation of tumor invasion. Urology. 2008;72(3):677–81.

    Article  PubMed  Google Scholar 

  25. Goh AC, Tresser NJ, Shen SS, Lerner SP. Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer. Urology. 2008;72(1):133–7.

    Article  PubMed  Google Scholar 

  26. Willmann E. Optical coherence tomography for bladder cancer-ready as a surrogate for optical biopsy? -Results of a prospective mono-centre study. pp. 131–4; 2010.

  27. Lingley-Papadopoulos CA, Loew MH, Manyak MJ, Zara JM. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. J Biomed Opt. 2013;13(2):024003.

    Article  Google Scholar 

  28. Bus MTJ, Muller BG, de Bruin DM, Faber DJ, Kamphuis GM, van Leeuwen TG, et al. Volumetric in vivo visualization of upper urinary tract tumors using optical coherence tomography: a pilot study. J Urol. 2013;190(6):2236–42.

    Article  PubMed  Google Scholar 

  29. Bonnal J-L, Rock A, Gagnat A, Papadopoulos S, Filoche B, Mauroy B. Confocal laser endomicroscopy of bladder tumors associated with photodynamic diagnosis: an ex vivo pilot study. Urology. 2012;80(5):1162.e1–5.

    Article  Google Scholar 

  30. Chang TC, Liu J-J, Liao JC. Probe-based confocal laser endomicroscopy of the urinary tract: the technique. J Vis Exp. 2013;(71):e4409.

  31. Schmidbauer J, Remzi M, Klatte T, Waldert M, Mauermann J, Susani M, et al. Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder. Eur Urol. 2009;56(6):914–9.

    Article  PubMed  Google Scholar 

  32. Gladkova N, Kiseleva E, Streltsova O, Prodanets N, Snopova L, Karabut M, et al. Combined use of fluorescence cystoscopy and cross-polarization OCT for diagnosis of bladder cancer and correlation with immunohistochemical markers. J Biophotonics. 2013;6(9):687–98.

    Article  PubMed  Google Scholar 

  33. Rao AR, Hanchanale V, Javle P, Karim O, Motiwala H. Spectroscopic view of life and work of the Nobel Laureate Sir C.V. Raman. J Endourol Endourol Soc. 2007;21(1):8–11.

    Article  Google Scholar 

  34. Draga ROP, Grimbergen MCM, Vijverberg PLM, van Swol CFP, Jonges TGN, Kummer JA, et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem. 2010;82(14):5993–9. This study showed the feasibility of in vivo RS for diagnosis of bladder cancer using a Raman probe. Bladder cancer and normal urothelium had characteristic Raman spectra that were used to discriminate healthy and cancerous bladder tissue.

    Article  CAS  PubMed  Google Scholar 

  35. de Jong BWD, Bakker Schut TC, Wolffenbuttel KP, Nijman JM, Kok DJ, Puppels GJ. Identification of bladder wall layers by Raman spectroscopy. J Urol. 2002;168(4 Pt 2):1771–8.

    Article  PubMed  Google Scholar 

  36. Crow P, Uff JS, Farmer JA, Wright MP, Stone N. The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro. BJU Int. 2004;93(9):1232–6.

    Article  CAS  PubMed  Google Scholar 

  37. Grimbergen MCM, van Swol CFP, Draga ROP, van Diest P, Verdaasdonk RM, Stone N, et al. Bladder cancer diagnosis during cystoscopy using Raman spectroscopy. Proc SPIE. 2009;7161:716114–716114–6.

    Google Scholar 

  38. Magee ND, Villaumie JS, Marple ET, Ennis M, Elborn JS, McGarvey JJ. Ex vivo diagnosis of lung cancer using a Raman miniprobe. J Phys Chem B. 2009;113(23):8137–41.

    CAS  PubMed  Google Scholar 

  39. Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci U S A. 2013;110(25):E2288–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31(4):249–57.

    Article  CAS  PubMed  Google Scholar 

  41. Schäfauer C, Ettori D, Rouprêt M, Phé V, Tualle J-M, Tinet E, et al. Detection of bladder urothelial carcinoma using in vivo noncontact, ultraviolet excited autofluorescence measurements converted into simple color coded images: a feasibility study. J Urol. 2013;190(1):271–7. This feasibility study demonstrated that bladder cancer could be detected using ultraviolet laser-induced autofluorescence measurements (AM). Converting the AMs into color-coded images, red indicating tumor and green indicating normal tissue, facilitated interpretation.

    Article  PubMed  Google Scholar 

  42. Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21(11):1369–77.

    Article  CAS  PubMed  Google Scholar 

  43. Jain M, Robinson BD, Scherr DS, Sterling J, Lee M-M, Wysock J, et al. Multiphoton microscopy in the evaluation of human bladder biopsies. Arch Pathol Lab Med. 2012;136(5):517–26.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Yadav R, Mudalair K, Srivastava A, Rubin MA. Multiphoton microscopy for structure identification in human prostate and periprostatic tissue: implications in prostate cancer surgery. BJU Int. 2012;108(9):1421–9.

    Google Scholar 

  45. Xu C. Multiphoton imaging for deep tissue penetration and clinical endoscopy. Proc SPIE. 2011;7891:78910H–78910H–4.

    Google Scholar 

  46. Rivera DR, Brown CM, Ouzounov DG, Pavlova I, Kobat D, Webb WW, et al. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. PNAS. 2011;108(43):17598–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Seibel EJ, Brentnall TA, Dominitz JA. New endoscopic and cytologic tools for cancer surveillance in the digestive tract. Gastrointest Endosc Clin N Am. 2009;19(2):299–307.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Seibel EJ, Brown CM, Dominitz JA, Kimmey MB. Scanning single fiber endoscopy: a new platform technology for integrated laser imaging, diagnosis, and future therapies. Gastrointest Endosc Clin N Am. 2008;18(3):467–78. viii.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Yoon WJ, Park S, Reinhall PG, Seibel EJ. Development of an automated steering mechanism for bladder urothelium surveillance. J Med Devices. 2009;3(1):011004.

    Article  Google Scholar 

  50. Soper TD, Porter MP, Seibel EJ. Surface mosaics of the bladder reconstructed from endoscopic video for automated surveillance. IEEE Trans Biomed Eng. 2012;59(6):1670–80.

    Article  PubMed  Google Scholar 

  51. Soper TD, Chandler JE, Porter MP, Seibel EJ. Constructing spherical panoramas of a bladder phantom from endoscopic video using bundle adjustment. 2011;7964:796417–796417–12, Mar. This study shows that stitching software is able to create a complete 360° panoramic image of a bladder phantom from video frames obtained with an SFE endoscope.

  52. Goldman RE, Bajo A, MacLachlan LS, Pickens R, Herrell SD, Simaan N. Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention. IEEE Trans Biomed Eng. 2013;60(4):918–25. This study demonstrates the design and evaluation of a prototype telerobotic system that provides a dexterous manipulator with access channels for the deployment of multiple tools, and is compatible with current resectoscope sheaths.

    Article  PubMed  Google Scholar 

  53. Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. PharmacoEconomics. 2003;21(18):1315–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kathleen Mach for critical review of the manuscript. A.L. is supported by the Stanford University School of Medicine MedScholars Research Fellowship. J.C.L. is supported in part by grant R01 CA160986 from the National Cancer Institute.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Aristeo Lopez declares no potential conflicts of interest relevant to this article.

Dr. Joseph C. Liao received a research grant from the National Institute of Health (NIH). Dr. Liao received travel support from Mauna Kea Technologies, including expenses covered or reimbursed, and payment for the development of educational presentations from Storz.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Liao.

Additional information

This article is part of the Topical Collection on New Imaging Techniques

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, A., Liao, J.C. Emerging Endoscopic Imaging Technologies for Bladder Cancer Detection. Curr Urol Rep 15, 406 (2014). https://doi.org/10.1007/s11934-014-0406-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-014-0406-5

Keywords

Navigation