Advertisement

Current Urology Reports

, Volume 14, Issue 2, pp 124–129 | Cite as

Update on use of Enhanced Imaging to Optimize Lymphadenectomy in Patients Undergoing Minimally Invasive Surgery for Urothelial Cancer of the Bladder

  • Lukas Lusuardi
  • Günter Janetschek
Minimally Invasive Surgery (V Bird, Section Editor)

Abstract

The most commonly used imaging modalities for diagnostic investigation of bladder carcinoma are contrast-enhanced computed tomography, magnetic resonance imaging, and positron emission tomography. More recently, radioisotope and fluorescence staining are being used before, or even during, open or laparoscopic surgery. We report recent results obtained with these imaging modalities and their limitations.

Keywords

Bladder cancer Imaging Lymphatic pathway Computed tomography Magnetic resonance Lymphoscintigraphy 

Notes

Disclosure

No conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Skinner DG. Management of invasive bladder cancer: a meticulous pelvic node dissection can make a difference. J Urol. 1982;128:34–6.PubMedGoogle Scholar
  2. 2.
    Herr HW, Bochner BH, Dalbagni G, et al. Impact of the number of lymph nodes retrieved on outcome in patients with muscle invasive bladder cancer. J Urol. 2002;167:1295–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Wright JL, Lin DW, Porter MP. The association between extent of lymphadenectomy and survival among patients with lymph node metastases undergoing radical cystectomy. Cancer. 2008;112:2401–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Mills RD, Turner WH, Fleischmann A, et al. Pelvic lymph node metastases from bladder cancer: outcome in 83 patients after radical cystectomy and pelvic lymphadenectomy. J Urol. 2001;166:19–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Dhar NB, Klein EA, Reuther AM, et al. Outcome after radical cystectomy with limited or extended pelvic lymph node dissection. J Urol. 2008;179:873–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Leissner J, Hohenfellner R, Thüroff JW, et al. Lymphadenectomy in patients with transitional cell carcinoma of the urinary bladder: significance for staging and prognosis. BJU Int. 2000;85:817–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim JK, Park SY, Ahn HJ, et al. Bladder cancer: analysis of multi-detector row helical CT enhancement pattern and accuracy in tumor detection and perivesical staging. Radiology. 2004;231:725–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Knox MK, Cowan NC, Rivers-Bowerman MD, et al. Of multidetector computed tomography urography and ultrasonography for diagnosing bladder cancer. Clin Radiol. 2008;63:1317–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Husband JE. Computer tomography and magnetic resonance imaging in the evaluation of bladder cancer. J Belge Radiol. 1995;78:350–5.PubMedGoogle Scholar
  10. 10.
    Kim B, Semelka RC, Ascher SM, et al. H. Bladder tumor staging: comparison of contrast-enhanced CT, T1- and T2-weighted MR imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology. 1994;193:239–45.PubMedGoogle Scholar
  11. 11.
    Kibel AS, Dehdashti F, Katz MD, et al. Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol. 2009;27:4314–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Apolo AB, Riches J, Schöder H, et al. Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J Clin Oncol. 2010;28:3973–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Drieskens O, Oyen R, Van Poppel H, et al. FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging. 2005;32:1412–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Leijte JAP, Valdés Olmos RA, Nieweg OE, et al. Anatomical mapping of lymphatic drainage in penile carcinoma with SPECT-CT: implications for the extent of inguinal lymph node dissection. Eur Urol. 2008;54:885–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Veronesi U, Paganelli G, Viale G. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med. 2003;349:546–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Gershenwald JE, Tseng CH, Thompson W, et al. Improved sentinel lymph node localization in patients with primary melanoma with the use of radiolabeled colloid. Surgery. 1998;124:203–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Weckermann D, Dorn R, Holl G, et al. Limitations of radioguided surgery in high-risk prostate cancer. Eur Urol. 2007;51:1549–58.PubMedCrossRefGoogle Scholar
  18. 18.
    •• Jeschke S, Lusuardi L, Myatt A, et al. Visualisation of the lymph node pathway in real time by laparoscopic radioisotope- and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. Urology. 2012;80(5):1080–7. First fluorescence laparoscopic guided sentinel lymphadenectomy.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeschke S, Beri A, Grüll M, Ziegerhofer J, et al. Laparoscopic radioisotope-guided sentinel lymph node dissection in staging of prostate cancer. Eur Urol. 2008;53(1):126–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Beneder C, Fuechsel FG, Krause T, et al. The role of 3D fusion imaging in sentinel lymphadenectomy for vulvar cancer. Gynecol Oncol. 2008;109:76–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Ballester M, Rouzier R, Coutant C, et al. Limits of lymphoscintigraphy for sentinel node biopsy in women with endometrial cancer. Gynecol Oncol. 2009;112:348–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Liedberg F, Chebil G, Davidsson T, et al. Intraoperative sentinel node detection improves nodal staging in invasive bladder cancer. J Urol. 2006;175:84–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Barentsz JO, Jager GJ, van Vierzen PB, et al. Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging. Radiology. 1996;201:185–93.PubMedGoogle Scholar
  24. 24.
    Barentsz JO, Engelbrecht MR, Witjes JA, et al. MR imaging of the male pelvis. Eur Radiol. 1999;9:1722–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Deserno WM, Harisinghani MG, Taupitz M, et al. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology. 2004;233:449–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang J, Gerst S, Lefkowitz RA, Bach A. Imaging of bladder cancer. Radiol Clin North Am. 2007;45:183–205.PubMedCrossRefGoogle Scholar
  27. 27.
    Saokar A, Islam T, Jantsch M, et al. Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin Imaging. 2010;34:361–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Jensen TK, Holt P, Gerke O, et al. Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fl uorodeoxyglucose positron emission tomography/computed axial tomography and magnetic resonance imaging: correlation with histopathology. Scand J Urol Nephrol. 2011;45:122–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Bellin MF, Roy C. Magnetic resonance lymphography. Curr Opin Urol. 2007;17:65–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Briganti A. How to improve the ability to detect pelvic lymph node metastases of urologic malignancies. Eur Urol. 2009;55:770–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Thoeny HC, Triantafyllou M, Birkhaeuser FD, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusionweighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol. 2009;55:761–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Lodde M, Lacombe L, Friede J, et al. Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int. 2010;106:658–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Swinnen G, Maes A, Pottel H, et al. FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol. 2010;57:641–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Picchio M, Treiber U, Beer AJ, et al. Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med. 2006;47:938–44.PubMedGoogle Scholar
  35. 35.
    • Schöder H, Ong SC, Reuter VE, et al. Initial results with 11C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol. 2012;14:245–51. A novel contrast medium for PET-CT.PubMedCrossRefGoogle Scholar
  36. 36.
    Kates AM, Herrero P, Dence C, et al. Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol. 2003;41:293–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Oyama N, Miller TR, Dehdashti F, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549–55.PubMedGoogle Scholar
  38. 38.
    • Nayak B, Dogra PN, Naswa N et al. Diuretic 18F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique. Eur J Nucl Med Mol Imaging 2012; Nov 24. [Epub ahead of print]. Attempt to improve lymphnode staging with application of furosemide to FDG-PET. Google Scholar
  39. 39.
    Sherif A, Garske U, de La Torre M, et al. Hybrid SPECT-CT: an additional technique for sentinel node detection of patients with invasive bladder cancer. Eur Urol. 2006;50:83–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Leissner J, Ghoneim MA, Abol-Enein H, et al. Extended radical lymphadenectomy in patients with urothelial bladder cancer: results of a prospective multicenter study. J Urol. 2004;171:139–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Vazina A, Dugi D, Shariat SF, et al. Stage specific lymph node metastasis mapping in radical cystectomy specimens. J Urol. 2004;171:1830–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Abol-Enein H, El-Baz M, Abd El-Hamed MA, et al. Lymph node involvement in patients with bladder cancer treated with radical cystectomy: a patho-anatomical study—a single center experience. J Urol. 2004;172:1818–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Roth B, Wissmeyer MP, Zehnder P, et al. A new multimodality technique accurately maps the primary lymphatic landing sites of the bladder. Eur Urol. 2010;57:205–11.PubMedCrossRefGoogle Scholar
  44. 44.
    •• Inoue S, Shiina H, Mitsui Y, et al. Identification of lymphatic pathway involved in the spread of bladder cancer: evidence obtained from fluorescence navigation with intraoperatively injected indocyanine green. Can Urol Assoc J. 2012 Sep 10:1–7. First ever application of fluorescence-guided open pelvic lymphadenectomy. Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Urology and AndrologyParacelsus Medical University SalzburgSalzburgAustria

Personalised recommendations