Current Urology Reports

, Volume 9, Issue 2, pp 137–142 | Cite as

Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption

  • Michael H. Hsieh
  • Benjamin N. Breyer
  • Michael L. Eisenberg
  • Laurence S. Baskin


Endocrine disruptors, such as environmental compounds with endocrine-altering properties, may cause hypospadias and crytorchidism in several species, including humans. Anogenital distance is sexually dimorphic in many mammals, with males having longer anogenital distance on average than females. Animal models of proposed endocrine disruptors have associated prenatal exposure with hypospadias, cryptorchidism, and reduced anogenital distance. Human studies have correlated shorter anogenital distance to in utero exposure to putative endocrine disruptors. We review preliminary data suggesting that anogenital distance is reduced in boys with hypospadia and cryptorchidism. Hence, human hypospadias and cryptorchidism may be associated with reduced anogenital distance as a result of endocrine disruption.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Baskin LS, Himes K, Colborn T: Hypospadias and endocrine disruption: is there a connection? Environ Health Perspect 2001, 109:1175–1183.PubMedCrossRefGoogle Scholar
  2. 2.
    McAleer IM, Kaplan GW: Is routine karyotyping necessary in the evaluation of hypospadias and cryptorchidism? J Urol 2001, 165:2029–2031.PubMedCrossRefGoogle Scholar
  3. 3.
    Swan SH, Main KM, Liu F, et al.: Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 2005, 113:1056–1061.PubMedCrossRefGoogle Scholar
  4. 4.
    Salazar-Martinez EP, Romano-Riquer E, Yanez-Marquez, et al.: Anogenital distance in human male and female newborns: a descriptive, cross-sectional study. Environ Health 2004, 3:8.PubMedCrossRefGoogle Scholar
  5. 5.
    McDermott NJ, Gandelman R, Reinisch JM: Contiguity to male fetuses influences ano-genital distance and time of vaginal opening in mice. Physiol Behav 1978, 20:661–663.PubMedCrossRefGoogle Scholar
  6. 6.
    Bongiovanni AM: The adrenogenital syndrome with deficiency of 3 beta-hydroxysteroid dehydrogenase. J Clin Invest 1962, 41:2086–2092.PubMedCrossRefGoogle Scholar
  7. 7.
    Longnecker MP, Gladen BC, Cupul-Uicab LA, et al.: In utero exposure to the antiandrogen 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) in relation to anogenital distance in male newborns from Chiapas, Mexico. Am J Epidemiol 2007, 165:1015–1022.PubMedCrossRefGoogle Scholar
  8. 8.
    Skakkebaek NE, Rajpert-De Meyts E, Main KM: Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 2001, 16:972–978.PubMedCrossRefGoogle Scholar
  9. 9.
    Mylchreest E, Cattley RC, Foster PM: Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci 1998, 43:47–60.PubMedGoogle Scholar
  10. 10.
    Gray LE Jr, Ostby J, Monosson M, Kelce WR: Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol Ind Health 1999, 15:48–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Mably TA, Moore RW, Peterson RE: In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 1. Effects on androgenic status. Toxicol Appl Pharmacol 1992, 114:97–107.PubMedCrossRefGoogle Scholar
  12. 12.
    Gallavan RH Jr, Holson JF, Stump DG, et al.: Interpreting the toxicologic significance of alterations in anogenital distance: potential for confounding effects of progeny body weights. Reprod Toxicol 1999, 13:383–390.PubMedCrossRefGoogle Scholar
  13. 13.
    Kirby R, Petrini J, Alter C: Collecting and interpreting birth defects surveillance data by hispanic ethnicity: a comparative study. The Hispanic Ethnicity Birth Defects Workgroup. Teratology 2000, 61:21–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Carmichael SL, Shaw GM, Nelson V, et al.: Hypospadias in California: trends and descriptive epidemiology. Epidemiology 2003, 14:701–706.PubMedCrossRefGoogle Scholar
  15. 15.
    Callegari C, Everett S, Ross M, Brasel JA: Anogenital ratio: measure of fetal virilization in premature and full-term newborn infants. J Pediatr 1987, 111:240–243.PubMedCrossRefGoogle Scholar
  16. 16.
    Lin LI: A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45:255–268.PubMedCrossRefGoogle Scholar
  17. 17.
    Marois G: Action of progesterone, testosterone and estradiol on the anogenital distance and somatic sexual differentiation in rats [in French]. Biol Med (Paris), 1968, 57:44–90.Google Scholar
  18. 18.
    Greenham LW, Greenham V: Sexing mouse pups. Lab Anim 1977, 11:181–184.PubMedCrossRefGoogle Scholar
  19. 19.
    Lonstein JS, Rood BD, De Vries GJ: Unexpected effects of perinatal gonadal hormone manipulations on sexual differentiation of the extrahypothalamic arginine-vasopressin system in prairie voles. Endocrinology 2005, 146:1559–1567.PubMedCrossRefGoogle Scholar
  20. 20.
    Raible LH, Gorzalka BB: Neonatal testosterone propionate treatment in the female gerbil: morphological and behavioral effects. Behav Neurosci 1987, 101:215–218.PubMedCrossRefGoogle Scholar
  21. 21.
    Drickamer LC, Arthur RD, Rosenthal TL: Conception failure in swine: importance of the sex ratio of a female’s birth litter and tests of other factors. J Anim Sci 1997, 75:2192–2196.PubMedGoogle Scholar
  22. 22.
    Kurzrock EA, Jegatheesan P, Cunha GR, Baskin LS: Urethral development in the fetal rabbit and induction of hypospadias: a model for human development. J Urol 2000, 164:1786–1792.PubMedCrossRefGoogle Scholar
  23. 23.
    Romagnoli S, Schlafer DH: Disorders of sexual differentiation in puppies and kittens: a diagnostic and clinical approach. Vet Clin North Am Small Anim Pract 2006, 36:573–606.PubMedCrossRefGoogle Scholar
  24. 24.
    Osadchuk LV, Braastad BO, Hovland AL, Bakken M: Handling during pregnancy in the blue fox (Alopex lagopus): the influence on the fetal gonadal function. Gen Comp Endocrinol 2003, 132:190–197.PubMedCrossRefGoogle Scholar
  25. 25.
    Reddacliff GL, Halnan CR, Martin IC: Mosaic 35,X/36,XY karyotype and intersex in a red panda (Ailurus fulgens fulgens). J Wildl Dis 1993, 29:169–173.PubMedGoogle Scholar
  26. 26.
    Vigier B, Prepin J, Jost A: Chronology of development of the genital tract of the calf fetus [in French]. Arch Anat Microsc Morphol Exp 1976, 65:77–101.PubMedGoogle Scholar
  27. 27.
    DeHaan KC, Berger LL, Kesler DJ, et al.: Effect of prenatal androgenization on lamb performance, carcass composition and reproductive function. J Anim Sci, 1987, 65:1465–1470.PubMedGoogle Scholar
  28. 28.
    Amasaki H, Ishikawa H, Daigo M: Development of the external genitalia in fetuses of the southern minke whale, Balaenoptera acutorostrata. Acta Anat (Basel) 1989, 135:142–148.Google Scholar
  29. 29.
    Hendrickx AG, Korte R, Leuschner F, et al.: Embryotoxicity of sex steroidal hormone combinations in nonhuman primates: I. Norethisterone acetate + ethinylestradiol and progesterone + estradiol benzoate (Macaca mulatta, Macaca fascicularis, and Papio cynocephalus). Teratology 1987, 35:119–127.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael H. Hsieh
    • 1
  • Benjamin N. Breyer
  • Michael L. Eisenberg
  • Laurence S. Baskin
  1. 1.Scott Department of UrologyTexas Children’s Hospital, Clinical Care Center, Baylor College of MedicineHoustonUSA

Personalised recommendations