Current Urology Reports

, Volume 6, Issue 2, pp 140–145 | Cite as

Mediators of fibrosis and apoptosis in obstructive uropathies

  • Rosalia Misseri
  • Kirstan K. Meldrum


Upper urinary tract obstruction, regardless of its cause, often poses a significant clinical challenge to the urologist. Renal cellular and molecular events that occur in response to upper urinary tract obstruction result in a progressive and permanent loss in renal function when left untreated. These pathologic changes include the development of renal fibrosis, tubular atrophy, interstitial inflammation, and apoptotic renal cell death. Several cytokines and growth factors have been identified as major contributors to obstruction-induced renal fibrosis and apoptotic cell death, most notably transforming growth factor-β1 (TGF-β1), angiotensin, nuclear factor-κB (NF-κB), and tumor necrosis factor-α (TNF-α). This review examines the challenges of upper urinary tract obstruction and the role of these mediators in obstruction-induced renal injury.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Klahr S, Morrissey JJ: The role of growth factors, cytokines, and vasoactive compounds in obstructive nephropathy. Semin Nephrol 1998, 18:622–632.PubMedGoogle Scholar
  2. 2.
    Gobe GC, Axelsen RA: Genesis of renal tubular atrophy in experimental hydronephrosis in the rat: role of apoptosis. Lab Invest 1987, 56:273–281.PubMedGoogle Scholar
  3. 3.
    Morrissey JJ, Ishidoya S, McCracken R, et al.: The effect of ACE inhibitors on the expression of matrix genes and the role of p53 and p21 (WAF1) in experimental renal fibrosis. Kidney Int 1996, 54(suppl):S83.Google Scholar
  4. 4.
    Border WA, Noble NA: Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994, 331:1286–1292.PubMedCrossRefGoogle Scholar
  5. 5.
    Eddy AA: Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996, 7:2495–2508.PubMedGoogle Scholar
  6. 6.
    Roberts AB, McCune BK, Sporn MB: TGF-beta: regulation of extracellular matrix. Kidney Int 1992, 41:557–559.PubMedCrossRefGoogle Scholar
  7. 7.
    Miyajima A, Chen J, Lawrence C, et al.: Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int 2000, 58:2301–2313.PubMedCrossRefGoogle Scholar
  8. 8.
    Ishidoya S, Morrissey J, McCracken R, et al.: Delayed treatment with enalapril halts tubulointerstitial fibrosis in rats with obstructive nephropathy. Kidney Int 1996, 49:1110–1119.PubMedCrossRefGoogle Scholar
  9. 9.
    Diamond JR, Ricardo SD, Klahr S: Mechanisms of interstitial fibrosis in obstructive nephropathy. Semin Nephrol 1998, 18:594–602.PubMedGoogle Scholar
  10. 10.
    Schnaper HW, Hayashida T, Poncelet AC: It’s a Smad world: regulation of TGF-beta signaling in the kidney. J Am Soc Nephrol 2002, 13:1126–1128.PubMedGoogle Scholar
  11. 11.
    Chung KH, Chevalier RL: Arrested development of the neonatal kidney following chronic ureteral obstruction. J Urol 1996, 155:1139–1144.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaneto H, Morrissey J, Klahr S: Increased expression of TGFbeta 1 mRNA in the obstructed kidney of rats with unilateral ureteral ligation. Kidney Int 1993, 44:313–321.PubMedCrossRefGoogle Scholar
  13. 13.
    Diamond JR, Kees-Folts D, Ding G, et al.: Macrophages, monocyte chemoattractant peptide-1, and TGF-beta 1 in experimental hydronephrosis. Am J Physiol 1994, 266:F926-F933.PubMedGoogle Scholar
  14. 14.
    Sutaria PM, Ohebshalom M, McCaffrey TA, et al.: Transforming growth factor-beta receptor types I and II are expressed in renal tubules and are increased after chronic unilateral ureteral obstruction. Life Sci 1998, 62:1965–1972.PubMedCrossRefGoogle Scholar
  15. 15.
    Fukuda K, Yoshitomi K, Yanagida T, et al.: Quantification of TGF-beta1 mRNA along rat nephron in obstructive nephropathy. Am J Physiol Renal Physiol 2001, 281:F513-F521.PubMedGoogle Scholar
  16. 16.
    Schreiner GF, Harris KP, Purkerson ML, et al.: Immunological aspects of acute ureteral obstruction: immune cell infiltrate in the kidney. Kidney Int 1988, 34:487–493.PubMedCrossRefGoogle Scholar
  17. 17.
    Diamond JR, Levinson M, Kreisberg R, et al.: Increased expression of decorin in experimental hydronephrosis. Kidney Int 1997, 51:1133–1139.PubMedCrossRefGoogle Scholar
  18. 18.
    Kuncio GS, Neilson EG, Haverty T: Mechanisms of tubulointerstitial fibrosis. Kidney Int 1991, 39:550–556.PubMedCrossRefGoogle Scholar
  19. 19.
    Roberts AB, Sporn MB: Transforming growth factor beta. Adv Cancer Res 1988, 51:107–145.PubMedGoogle Scholar
  20. 20.
    Postlethwaite AE, Keski-Oja J, Moses HL, et al.: Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J Exp Med 1987, 165:251–256.PubMedCrossRefGoogle Scholar
  21. 21.
    Chandrasekhar S, Harvey AK: Transforming growth factor-beta is a potent inhibitor of IL-1 induced protease activity and cartilage proteoglycan degradation. Biochem Biophys Res Commun 1988, 157:1352–1359.PubMedCrossRefGoogle Scholar
  22. 22.
    Vassalli JD, Sappino AP, Belin D: The plasminogen activator/ plasmin system. J Clin Invest 1991, 88:1067–1072.PubMedGoogle Scholar
  23. 23.
    Malyankar UM, Almeida M, Johnson RJ, et al.: Osteopontin regulation in cultured rat renal epithelial cells. Kidney Int 1997, 51:1766–1773.PubMedCrossRefGoogle Scholar
  24. 24.
    Ishidoya S, Morrissey J, McCracken R, et al.: Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 1995, 47:1285–1294.PubMedCrossRefGoogle Scholar
  25. 25.
    El-Dahr SS, Gee J, Dipp S, et al.: Upregulation of renin-angiotensin system and downregulation of kallikrein in obstructive nephropathy. Am J Physiol 1993, 264:F874-F881.PubMedGoogle Scholar
  26. 26.
    Pimentel JL Jr, Martinez-Maldonado M, Wilcox J, et al.: Regulation of renin-angiotensin system in unilateral ureteral obstruction. Kidney Int 1993, 44:390–400.PubMedCrossRefGoogle Scholar
  27. 27.
    Pimentel JL Jr, Montero A, Wang S, et al.: Sequential changes in renal expression of renin-angiotensin system genes in acute unilateral ureteral obstruction. Kidney Int 1995, 48:1247–1253.PubMedCrossRefGoogle Scholar
  28. 28.
    Ricardo SD, Levinson ME, DeJoseph MR, et al.: Expression of adhesion molecules in rat renal cortex during experimental hydronephrosis. Kidney Int 1996, 50:2002–2010.PubMedCrossRefGoogle Scholar
  29. 29.
    Klahr S, Harris K, Purkerson ML: Effects of obstruction on renal functions. Pediatr Nephrol 1988, 2:34–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Klahr S: New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 1991, 18:689–699.PubMedGoogle Scholar
  31. 31.
    Bernstein KE, Berk BC: The biology of angiotensin II receptors. Am J Kidney Dis 1993, 22:745–754.PubMedGoogle Scholar
  32. 32.
    Meister B, Lippoldt A, Bunnemann B, et al.: Cellular expression of angiotensin type-1 receptor mRNA in the kidney. Kidney Int 1993, 44:331–336.PubMedCrossRefGoogle Scholar
  33. 33.
    Sechi LA, Grady EF, Griffin CA, et al.: Distribution of angiotensin II receptor subtypes in rat and human kidney. Am J Physiol 1992, 262:F236-F240.PubMedGoogle Scholar
  34. 34.
    Yoo KH, Thornhill BA, Wolstenholme JT, et al.: Tissue-specific regulation of growth factors and clusterin by angiotensin II. Am J Hypertens 1998, 11:715–722.PubMedCrossRefGoogle Scholar
  35. 35.
    Klahr S, Morrissey JJ: Comparative study of ACE inhibitors and angiotensin II receptor antagonists in interstitial scarring. Kidney Int Suppl 1997, 63:S111-S114.PubMedGoogle Scholar
  36. 36.
    Guo G, Morrissey J, McCracken R, et al.: Contributions of angiotensin II and tumor necrosis factor-alpha to the development of renal fibrosis. Am J Physiol Renal Physiol 2001, 280:F777-F785.PubMedGoogle Scholar
  37. 37.
    Morrissey JJ, Klahr S: Differential effects of ACE and AT1 receptor inhibition on chemoattractant and adhesion molecule synthesis. Am J Physiol 1998, 274:F580-F586.PubMedGoogle Scholar
  38. 38.
    Chevalier RL, Thornhill BA, Wolstenholme JT: Renal cellular response to ureteral obstruction: role of maturation and angiotensin II. Am J Physiol 1999, 277:F41-F47. This article reviews the role of angiotensin II and its receptors in unilateral ureteral obstruction. It carefully examines the renal cellular response UUO in the neonatal and adult rat and the effect of receptor inhibition on renal cellular proliferation and apoptosis.PubMedGoogle Scholar
  39. 39.
    Morrissey JJ, Klahr S: Effect of AT2 receptor blockade on the pathogenesis of renal fibrosis. Am J Physiol 1999, 276:F39-F45.PubMedGoogle Scholar
  40. 40.
    Klahr S, Morrissey J: Angiotensin II and gene expression in the kidney. Am J Kidney Dis 1998, 31:171.PubMedGoogle Scholar
  41. 41.
    Haralambous-Gasser A, Chan D, Walker RG, et al.: Collagen studies in newborn rat kidneys with incomplete ureteric obstruction. Kidney Int 1993, 44:593–605.PubMedCrossRefGoogle Scholar
  42. 42.
    Pimentel JL Jr, Sundell CL, Wang S, et al.: Role of angiotensin II in the expression and regulation of transforming growth factorbeta in obstructive nephropathy. Kidney Int 1995, 48:1233–1246.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaneto H, Morrissey J, McCracken R, et al.: The expression of mRNA for tumor necrosis factor-alpha increases in the obstructed kidney of rats soon after unilateral ureteral ligation. Nephrology 1996, 2:161.CrossRefGoogle Scholar
  44. 44.
    Morrissey JJ, Klahr S: Rapid communication: enalapril decreases nuclear factor kappa B activation in the kidney with ureteral obstruction. Kidney Int 1997, 52:926–933.PubMedCrossRefGoogle Scholar
  45. 45.
    Morrissey J, Klahr S: Transcription factor NF-kappaB regulation of renal fibrosis during ureteral obstruction. Semin Nephrol 1998, 18:603–611.PubMedGoogle Scholar
  46. 46.
    Miyajima A, Kosaka T, Seta K, et al.: Novel nuclear factor kappa B activation inhibitor prevents inflammatory injury in unilateral ureteral obstruction. J Urol 2003, 169:1559–1563.PubMedCrossRefGoogle Scholar
  47. 47.
    Li J, Brasier AR: Angiotensinogen gene activation by angiotensin II is mediated by the rel A (nuclear factor-kappaB p65) transcription factor: one mechanism for the renin angiotensin system positive feedback loop in hepatocytes. Mol Endocrinol 1996, 10:252–264.PubMedCrossRefGoogle Scholar
  48. 48.
    Baeuerle PA, Henkel T: Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994, 12:141–179.PubMedGoogle Scholar
  49. 49.
    Hirahashi J, Takayanagi A, Hishikawa K, et al.: Overexpression of truncated I kappa B alpha potentiates TNF-alpha-induced apoptosis in mesangial cells. Kidney Int 2000, 57:959–968.PubMedCrossRefGoogle Scholar
  50. 50.
    Sumitomo M, Tachibana M, Nakashima J, et al.: An essential role for nuclear factor kappa B in preventing TNF-alphainduced cell death in prostate cancer cells. J Urol 1999, 161:674–679.PubMedCrossRefGoogle Scholar
  51. 51.
    Lang A, Schoonhoven R, Tuvia S, et al.: Nuclear factor kappaB in proliferation, activation, and apoptosis in rat hepatic stellate cells. J Hepatol 2000, 33:49–58.PubMedCrossRefGoogle Scholar
  52. 52.
    Cross JV, Deak JC, Rich EA, et al.: Quinone reductase inhibitors block SAPK/JNK and NFkappaB pathways and potentiate apoptosis. J Biol Chem 1999, 274:31150–31154.PubMedCrossRefGoogle Scholar
  53. 53.
    Beg AA, Baltimore D: An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996, 274:782–784.PubMedCrossRefGoogle Scholar
  54. 54.
    Sugiyama H, Savill JS, Kitamura M, et al.: Selective sensitization to tumor necrosis factor-alpha-induced apoptosis by blockade of NF-kappaB in primary glomerular mesangial cells. J Biol Chem 1999, 274:19532–19537.PubMedCrossRefGoogle Scholar
  55. 55.
    Van Antwerp DJ, Martin SJ, Kafri T, et al.: Suppression of TNFalpha-induced apoptosis by NF-kappaB. Science 1996, 274:787–789.PubMedCrossRefGoogle Scholar
  56. 56.
    Donnahoo KK, Shames BD, Harken AH, et al.: The role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol 1999, 162:196–203.PubMedCrossRefGoogle Scholar
  57. 57.
    Ortiz A, Bustos C, Alonso J, et al.: Involvement of tumor necrosis factor-alpha in the pathogenesis of experimental and human glomerulonephritis. Adv Nephrol Necker Hosp 1995, 24:53–77.PubMedGoogle Scholar
  58. 58.
    Guo G, Morrissey J, McCracken R, et al.: Role of TNFR1 and TNFR2 receptors in tubulointerstitial fibrosis of obstructive nephropathy. Am J Physiol 1999, 277:F766-F772.PubMedGoogle Scholar
  59. 59.
    Donnahoo KK, Meng X, Ayala A, et al.: Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol 1999, 277:R922-R929.PubMedGoogle Scholar
  60. 60.
    Donnahoo KK, Meldrum DR, Shenkar R, et al.: Early renal ischemia, with or without reperfusion, activates NFkappaB and increases TNF-alpha bioactivity in the kidney. J Urol 2000, 163:1328–1332.PubMedCrossRefGoogle Scholar
  61. 61.
    Meldrum KK, Meldrum DR, Hile KL, et al.: p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alphadependent apoptosis during simulated ischemia. Am J Physiol Cell Physiol 2001, 281:C563-C570.PubMedGoogle Scholar
  62. 62.
    Donnahoo KK, Meng X, Ao L, et al.: Differential cellular immunolocalization of renal tumour necrosis factor-alpha production during ischaemia versus endotoxaemia. Immunology 2001, 102:53–58.PubMedCrossRefGoogle Scholar
  63. 63.
    Ranganath RM, Nagashree NR: Role of programmed cell death in development. Int Rev Cytol 2001, 202:159–242.PubMedGoogle Scholar
  64. 64.
    Bellamy CO, Malcomson RD, Harrison DJ, et al.: Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol 1995, 6:3–16.PubMedCrossRefGoogle Scholar
  65. 65.
    Wyllie AH, Kerr JF, Currie AR: Cell death: the significance of apoptosis. Int Rev Cytol 1980, 68:251–306.PubMedCrossRefGoogle Scholar
  66. 66.
    Miyajima A, Asano T, Yoshimura I, et al.: Tranilast ameliorates renal tubular damage in unilateral ureteral obstruction. J Urol 2001, 165:1714–1718.PubMedCrossRefGoogle Scholar
  67. 67.
    Gerth JH, Kriegsmann J, Trinh TT, et al.: Induction of p27KIP1 after unilateral ureteral obstruction is independent of angiotensin II. Kidney Int 2002, 61:68–79.PubMedCrossRefGoogle Scholar
  68. 68.
    Truong LD, Sheikh-Hamad D, Chakraborthy S, et al.: Cell apoptosis and proliferation in obstructive uropathy. Semin Nephrol 1998, 18:641–651. This article reviews apoptosis and cell proliferation, highlighting the functions of important molecules such as angiotensin II and TGF<a.PubMedGoogle Scholar
  69. 69.
    Karin M, Cao Y, Greten FR, et al.: NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002, 2:301–310.PubMedCrossRefGoogle Scholar
  70. 70.
    Meldrum KK, Burnett AL, Meng X, et al.: Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-kappaB activation, tumor necrosis factor-alpha production, and subsequent ischemia-induced apoptosis. Circ Res 2003, 92:293–299.PubMedCrossRefGoogle Scholar
  71. 71.
    Ishibashi N, Weisbrot-Lefkowitz M, Reuhl K, et al.: Modulation of chemokine expression during ischemia/reperfusion in transgenic mice overproducing human glutathione peroxidases. J Immunol 1999, 163:5666–5677.PubMedGoogle Scholar
  72. 72.
    Thevenod F, Friedmann JM, Katsen AD, et al.: Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 2000, 275:1887–1896.PubMedCrossRefGoogle Scholar
  73. 73.
    Hsu H, Xiong J, Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NFkB activation. Cell 1995, 81:495–504.PubMedCrossRefGoogle Scholar
  74. 74.
    Chinnaiyan AM, O’Rourke K, Tewari M, et al.: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995, 81:505–512.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Rosalia Misseri
    • 1
  • Kirstan K. Meldrum
    • 2
  1. 1.Department of UrologyChildren’s Hospital of New York Presbyterian Hospital, Weill Cornell Medical CollegeNew YorkUSA
  2. 2.Riley Hospital for Children, Indiana UniversityDepartment of Pediatric UrologyIndianapolisUSA

Personalised recommendations